Spinning Black Hole Drags Space-Time: What Causes Friction?

Click For Summary

Discussion Overview

The discussion centers on the phenomenon of frame dragging associated with spinning black holes and the nature of the 'friction' component that may contribute to this effect. Participants explore theoretical implications and mathematical interpretations related to the curvature of spacetime in the vicinity of black holes.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant notes that spinning black holes distort spacetime, raising the question of what 'friction' allows for this distortion.
  • Another participant mentions the Gravity Probe B satellite's findings on frame dragging, clarifying that spacetime does not possess material properties like friction and that the mechanisms behind spacetime curvature remain uncertain.
  • A participant speculates that in the case of a very massive, spinning black hole, the local spacetime could appear stationary relative to the black hole, leading to frame dragging effects, and seeks expert validation of this idea.
  • Further elaboration on the constraints of angular velocities near a spinning black hole is presented, distinguishing between the kinematics of the hole and the concept of frame dragging.
  • A participant expresses gratitude for the explanations provided and reflects on the complexity of the subject matter, indicating a desire to maintain intuitive understanding without taking it too literally.

Areas of Agreement / Disagreement

Participants express varying interpretations of the mechanisms behind frame dragging and the nature of spacetime, with no consensus reached on the specifics of the 'friction' component or the mathematical descriptions involved.

Contextual Notes

Some limitations include the dependence on definitions of spacetime and the unresolved nature of the mathematical steps involved in relating black hole spin to frame dragging effects.

happyhacker
Messages
49
Reaction score
7
TL;DR
Spinning Black Hole and it's connection with Space-time.
If a Black Hole is spinning (perhaps they all do) I have heard it distorts the 'fabric' of Space-time in the vicinity. What is the 'friction' component which allows the distortion?
 
Physics news on Phys.org
It's worth noting that we have actually looked for this frame dragging effect in the vicinity of the Earth with the Gravity Probe B satellite, and it's been detected as predicted (to available precision, anyway).

It isn't a frictional effect, though - spacetime isn't a fabric and doesn't have material properties like a coefficient of friction. Unfortunately, I'm not sure that there is an answer to your question. All that we know about spacetime is that it curves in the presence of matter and energy in a way described by the Einstein Field Equations. In the presence of spinning masses, the equations say that the curvature of spacetime is such that free-falling objects start to orbit in the direction of spin. Fundamentally, that means that we know what happens but we don't really have a deeper answer about mechanisms.

If we ever work out a quantum theory of gravity, then we may be able to provide some mechanism for the curvature effects that we predict and see. However, such a theory would have its own "just because" aspects - all physical theories do.
 
Last edited:
  • Informative
Likes   Reactions: FactChecker
I would like to speculate as an amateur, if that is allowed in this forum, about something that might make frame-dragging more intuitive.
Suppose we have the extreme case of a very massive, spinning black hole. Near the hole, the mathematics is dominated by the hole and even the rest of the entire universe becomes secondary. So the mathematics would start to look in the limit as though the black hole is stationary and the local space-time would correspond to that. Farther from the black hole, the mathematics returns to normal with the universe being stationary and the black hole spinning. The overall effect would be frame-dragging near the black hole.
I would welcome an expert opinion on the validity of this, admittedly crude, thought.
 
FactChecker said:
Suppose we have the extreme case of a very massive, spinning black hole. Near the hole, the mathematics is dominated by the hole and even the rest of the entire universe becomes secondary. So the mathematics would start to look in the limit as though the black hole is stationary and the local space-time would correspond to that. Farther from the black hole, the mathematics returns to normal with the universe being stationary and the black hole spinning. The overall effect would be frame-dragging near the black hole.
I would welcome an expert opinion on the validity of this, admittedly crude, thought.
I'm not sure how well this will actually translate into the actual math.

It is true that, the closer you get to a spinning hole, the more the range of possible angular velocities (relative to infinity) you can have is constrained. The static limit, where the ergosphere starts, is where the constraint on possible angular velocities starts to exclude zero angular velocity--i.e., it's no longer possible, inside that limit, to not have some positive angular velocity; the smallest angular velocity you can have becomes greater than zero. But there is also a constraint on the largest angular velocity you can have, and the range between the two constraints gets tighter and tighter, until in the limit, as you approach the hole's horizon, the constraint tightens to a single possible angular velocity, the angular velocity of the hole itself.

I'm not sure that "the mathematics is dominated by the hole" is a good way to describe the above, though. The possible kinematics (i.e., possible orbital parameters) are increasingly dominated by the "kinematics of the hole" in the sense described above. However, this is not the same thing as frame dragging--although it has the same ultimate source, the spin of the hole. Frame dragging--the thing Gravity Probe B was testing for, Lense-Thirring precession--is an effect involving the direction in which spatial vectors fixed to a rigid body point as it orbits; it is not an effect involving the parameters of the orbit itself (such as the possible angular velocities).
 
  • Like
Likes   Reactions: FactChecker
@PeterDonis , Thanks. I appreciate your effort to explain it to a casual amateur. It is a tough subject. As long as my intuition is not completely absurd, I will probably just have to settle for it and not try to take it too literally. :-)
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
1K
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 51 ·
2
Replies
51
Views
5K
  • · Replies 28 ·
Replies
28
Views
2K
  • · Replies 46 ·
2
Replies
46
Views
8K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 44 ·
2
Replies
44
Views
4K