- #1

Onamor

- 78

- 0

**Spinor notation exercise with grassman numbers**

I'm checking a term when squaring a vector superfield in Wess-Zumino gauge, but its really just an excercise in index/spinor notation:

I need to square the term [itex]\left(\theta^{\alpha}\left(\sigma^{\mu}\right)_{\alpha\dot{\beta}}\bar{\theta}^{\dot{\beta}}\right)V_{\mu}[/itex]

where [itex]\theta^{\alpha}[/itex] is a Weyl spinor of grassman numbers, [itex]\bar{\theta}^{\dot{\beta}}[/itex] is a spinor in conjugate rep, [itex]\sigma^{\mu}[/itex] is a Pauli 4-vector (ie [itex]\left(1,\sigma^{i}\right)[/itex]) and [itex]V_{\mu}[/itex] is just a 4-vector.

The answer is [itex]\frac{1}{2}\left(\theta\theta\right)\left(\bar{\theta}\bar{\theta}\right)V^{\mu}V_{\mu}[/itex] where [itex]\left(\theta\theta\right)\equiv\theta^{\alpha}\theta_{\alpha}[/itex] and [itex]\left(\bar{\theta}\bar{\theta}\right)\equiv\theta_{\dot{\beta}}\theta^{\dot{\beta}}[/itex].

So,

*in detail,*to square the term I want to multiply it by a similar term with upper and lower indices switched:

[itex]\left(\theta^{\alpha}\left(\sigma^{\mu}\right)_{\alpha\dot{\beta}}\bar{\theta}^{\dot{\beta}}\right)\left(\theta_{\delta}\left(\sigma_{\nu}\right)^{\delta\dot{\gamma}}\bar{\theta}_{\dot{\gamma}}\right)V^{\nu}V_{\mu}[/itex].

First of all I switch the [itex]\bar{\theta}^{\dot{\beta}}\theta_{\delta}[/itex] for free as they commute(?)

Then since [itex]\theta^{\alpha}\theta_{delta}=\theta^{\alpha}\theta^{\lambda}\epsilon_{\lambda\delta}=-\frac{1}{2}\left(\theta\theta\right)\epsilon^{\alpha\lambda}\epsilon^{\lambda\delta}=-\frac{1}{2}\left(\theta\theta\right)\delta^{\alpha}_{\delta}[/itex],

and similarly [itex]\bar{\theta}^{\dot{\beta}}\bar{\theta}_{\dot{\gamma}}=\frac{1}{2}\left(\bar{\theta}\bar{\theta}\right)\delta^{\dot{\beta}}_{\dot{\gamma}}[/itex], I have

[itex]-\frac{1}{4}\left(\theta\theta\right)\left(\bar{\theta}\bar{\theta}\right)\delta^{\alpha}_{\delta}\delta^{\dot{\beta}}_{\dot{\gamma}}\left(\sigma^{\mu}\right)_{\alpha\dot{\beta}}\left(\sigma_{\nu}\right)^{\delta\dot{\gamma}}V^{\nu}V_{\mu}[/itex].

Or [itex]-\frac{1}{4}\left(\theta\theta\right)\left(\bar{\theta}\bar{\theta}\right)\left(\sigma^{\mu}\right)_{\alpha\dot{\beta}}\left(\sigma_{\nu}\right)^{\alpha\dot{\beta}}V^{\nu}V_{\mu}[/itex].

So, does [itex]\left(\sigma^{\mu}\right)_{\alpha\dot{\beta}}\left(\sigma_{\nu}\right)^{\alpha\dot{\beta}}=-2\delta^{\mu}_{\nu}[/itex]?

Its possible that a minus sign comes from the commutation of the two thetas in the first step, and perhaps I should have used the conjugate pauli 4-vector [itex]\left(-1,\sigma^{i}\right)[/itex] to square the term?

Last edited: