A Spontaneous emission and coherence

kelly0303
Messages
573
Reaction score
33
Assume I prepare a linear superposition ##\frac{1}{\sqrt{2}}(|g>+|e>)## between a ground and excited level for a large number of "atoms" (it can by any multilevel system, not necessarily an atom). We can assume that the lifetime of the excited level is long enough to allow us to create this superposition, but it is not infinite. Assume also that the excited state can decay to many other levels, beside ##|g>##, such that the probability of ##|e>## decaying back to ##|g>## is negligible for the purpose of this question. If I wait for a time much longer than the lifetime of the excited state (the ground state is stable), will I find half of my initially prepared "atoms" in ##|g>## and the other spread among the other levels, or will all the "atoms" decay to the other levels? Thank you!
 
Physics news on Phys.org
kelly0303 said:
will I find half of my initially prepared "atoms" in |g>
Yes. What made you think that it might not be the case?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top