Spring Problem Involving Variables and Constants Only

AI Thread Summary
The discussion centers on solving a spring problem involving variables and constants, focusing on the relationship between acceleration, force, and energy conservation. The initial attempt uses Newton's second law to derive the spring constant \( k \) and the displacement \( x \), but the official solution requires expressing \( k \) in terms of \( m, g, a, \) and \( h \). Participants highlight the need for clarity in the problem statement regarding the desired variables. The conversation concludes with an acknowledgment that re-evaluating the equations helped clarify the relationships between the variables. Understanding these relationships is crucial for accurately solving the problem.
Argonaut
Messages
45
Reaction score
24
Homework Statement
An experimental apparatus with mass ##m## is placed on a vertical spring of negligible mass and pushed down until the spring is compressed a distance ##x##. The apparatus is then released and reaches its maximum height at a distance ##h## above the point where it is released. The apparatus is not attached to the spring, and at its maximum height it is no longer in contact with the spring. The maximum magnitude of acceleration the apparatus can have without being damaged is ##a##, where ##a > g##. (a) What should the force constant of the spring be? (b) What distance ##x## must the spring be compressed initially?
Relevant Equations
$$F=ma$$
$$U_{\text{grav}}=mgh$$
$$U_{\text{el}}=\frac{1}{2}kx^2$$
Here is my attempt at the solution:

a) The apparatus may only experience acceleration ##a > g## while in contact with the spring. Since the spring exerts the greatest force when it is the most compressed, the apparatus will undergo the greatest acceleration at that point. So Newton's second law gives
$$\sum F = ma$$
$$kx-mg = ma$$
Therefore, the force constant of the spring should be $$k = \frac{m(a+g)}{x}$$.

b) There are only conservative forces in the system, so energy is conserved. Let point 1 (with ##y=0##) be the point where the apparatus is released and let point 2 be the point where it reaches height ##h##. Then
$$U_1=U_2$$
$$\frac{1}{2}kx^2 = mgh$$
Expressing ##x##
$$x=\sqrt{\frac{2mgh}{k}}$$

However, the official solution at the back of the book is
a)
$$k = \frac{m(g+a)^2}{2gh} $$
b)
$$x = \frac{2gh}{g+a} $$

I could 'reverse-engineer' both solutions. However, I don't understand how I should have known to express ##k## in terms of ##m##, ##a##, ##g## and ##h##, and not ##x##. Is it because of part b? Because essentially, both ##k## and ##x## are target variables and only the rest are known?
 
Physics news on Phys.org
Argonaut said:
$$k = \frac{m(a+g)}{x}$$ $$x=\sqrt{\frac{2mgh}{k}}$$
These look good. Can you combine them so that ##k## is expressed in terms of ##m,g, a## and ##h## instead of ##m, g, a## and ##x##?
 
Argonaut said:
how I should have known to express k in terms of m, a, g and h, and not x.
The question ought to have stated, in part a, that the answer should be in terms of m, g, a and h.
I suppose you might have noticed that your answers expressed x in terms of k, then k in terms of x, in such a way that each could be expressed without the other; and since x usually refers to an unknown to be found, and you know k is to be found…
 
TSny said:
These look good. Can you combine them so that ##k## is expressed in terms of ##m,g, a## and ##h## instead of ##m, g, a## and ##x##?
Yes and they give the book solution.
haruspex said:
The question ought to have stated, in part a, that the answer should be in terms of m, g, a and h.
I suppose you might have noticed that your answers expressed x in terms of k, then k in terms of x, in such a way that each could be expressed without the other; and since x usually refers to an unknown to be found, and you know k is to be found…
Got it.

Thanks, both. It makes more sense now that I typed it up and pondered some more.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top