Spring Problem Involving Variables and Constants Only

Click For Summary

Homework Help Overview

The discussion revolves around a spring problem involving variables and constants, specifically focusing on the relationship between spring constant \( k \), mass \( m \), acceleration \( a \), gravitational acceleration \( g \), height \( h \), and displacement \( x \). Participants explore how to express these variables in terms of one another while considering the principles of mechanics and energy conservation.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the derivation of the spring constant \( k \) and its relationship with other variables. There is an exploration of how to express \( k \) in terms of \( m, g, a, \) and \( h \) rather than \( x \). Questions arise regarding the reasoning behind variable expressions and the implications of the problem's wording.

Discussion Status

Participants are actively engaging with the problem, attempting to clarify their understanding of variable relationships. Some express confusion about how to derive \( k \) without involving \( x \), while others suggest that the problem could have been clearer in its requirements. There is a sense of progress as participants reflect on their reasoning and the connections between the variables.

Contextual Notes

There is a noted ambiguity in the problem statement regarding the expected form of the answers, particularly in part a. Participants are considering the implications of expressing variables in terms of one another and the typical conventions in such problems.

Argonaut
Messages
45
Reaction score
24
Homework Statement
An experimental apparatus with mass ##m## is placed on a vertical spring of negligible mass and pushed down until the spring is compressed a distance ##x##. The apparatus is then released and reaches its maximum height at a distance ##h## above the point where it is released. The apparatus is not attached to the spring, and at its maximum height it is no longer in contact with the spring. The maximum magnitude of acceleration the apparatus can have without being damaged is ##a##, where ##a > g##. (a) What should the force constant of the spring be? (b) What distance ##x## must the spring be compressed initially?
Relevant Equations
$$F=ma$$
$$U_{\text{grav}}=mgh$$
$$U_{\text{el}}=\frac{1}{2}kx^2$$
Here is my attempt at the solution:

a) The apparatus may only experience acceleration ##a > g## while in contact with the spring. Since the spring exerts the greatest force when it is the most compressed, the apparatus will undergo the greatest acceleration at that point. So Newton's second law gives
$$\sum F = ma$$
$$kx-mg = ma$$
Therefore, the force constant of the spring should be $$k = \frac{m(a+g)}{x}$$.

b) There are only conservative forces in the system, so energy is conserved. Let point 1 (with ##y=0##) be the point where the apparatus is released and let point 2 be the point where it reaches height ##h##. Then
$$U_1=U_2$$
$$\frac{1}{2}kx^2 = mgh$$
Expressing ##x##
$$x=\sqrt{\frac{2mgh}{k}}$$

However, the official solution at the back of the book is
a)
$$k = \frac{m(g+a)^2}{2gh} $$
b)
$$x = \frac{2gh}{g+a} $$

I could 'reverse-engineer' both solutions. However, I don't understand how I should have known to express ##k## in terms of ##m##, ##a##, ##g## and ##h##, and not ##x##. Is it because of part b? Because essentially, both ##k## and ##x## are target variables and only the rest are known?
 
Physics news on Phys.org
Argonaut said:
$$k = \frac{m(a+g)}{x}$$ $$x=\sqrt{\frac{2mgh}{k}}$$
These look good. Can you combine them so that ##k## is expressed in terms of ##m,g, a## and ##h## instead of ##m, g, a## and ##x##?
 
  • Like
Likes   Reactions: Argonaut
Argonaut said:
how I should have known to express k in terms of m, a, g and h, and not x.
The question ought to have stated, in part a, that the answer should be in terms of m, g, a and h.
I suppose you might have noticed that your answers expressed x in terms of k, then k in terms of x, in such a way that each could be expressed without the other; and since x usually refers to an unknown to be found, and you know k is to be found…
 
  • Like
Likes   Reactions: Argonaut
TSny said:
These look good. Can you combine them so that ##k## is expressed in terms of ##m,g, a## and ##h## instead of ##m, g, a## and ##x##?
Yes and they give the book solution.
haruspex said:
The question ought to have stated, in part a, that the answer should be in terms of m, g, a and h.
I suppose you might have noticed that your answers expressed x in terms of k, then k in terms of x, in such a way that each could be expressed without the other; and since x usually refers to an unknown to be found, and you know k is to be found…
Got it.

Thanks, both. It makes more sense now that I typed it up and pondered some more.
 
  • Like
Likes   Reactions: TSny

Similar threads

  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
7
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
24
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K