Square Numbers Satisfying $3x^2+x=4y^2+y$

  • Context: MHB 
  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Numbers Square
Click For Summary
SUMMARY

The equation $3x^2+x=4y^2+y$ has been established to have at least one solution with positive integers, specifically $x=30$ and $y=26$. For any positive integers $x$ and $y$ satisfying this equation, it is proven that $x-y$, $3x+3y+1$, and $4x+4y+1$ are all perfect squares. This conclusion is derived from the manipulation of the original equation and the properties of squares in number theory.

PREREQUISITES
  • Understanding of quadratic equations and their properties
  • Familiarity with perfect squares and integer solutions
  • Basic knowledge of algebraic manipulation
  • Experience with number theory concepts
NEXT STEPS
  • Explore the properties of quadratic Diophantine equations
  • Investigate the relationship between integer solutions and perfect squares
  • Learn about Pell's equation and its applications in number theory
  • Study the methods for proving the existence of integer solutions in polynomial equations
USEFUL FOR

Mathematicians, number theorists, and students interested in algebraic equations and their integer solutions will benefit from this discussion.

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
show that for x,y positive integers satisfying $3x^2+x= 4y^2+y$ each of x-y , 3x+3y+ 1 and 4x + 4y + 1 are squares. ( above equation has atleast one solution x= 30 and y = 26)
 
Mathematics news on Phys.org
kaliprasad said:
show that for x,y positive integers satisfying $3x^2+x= 4y^2+y--(1)$
each of x-y =a^2 (2),
3x+3y+ 1=b^2 (3)and
4x + 4y + 1 (4)
are squares. ( above equation has atleast one solution x= 30 and y = 26)
from (2):$x-y=a^2>0---(*)$
from (3):$x+y=\dfrac{b^2-1}{3}=\dfrac{(b+1)(b-1)}{3}$
$\therefore (b+1)\,\, mod \,\ 3=0\,\, or \,\, (b-1)\,\, mod \,\, 3=0$
if $x+y \,\, even \,\, then \,\, b \,\, must \,\, be\,\ odd$
take $b=13$,we have $x+y=56$
if we let $x-y=a^2=4,\,\, and \,\ x+y=56$
the solution $x=30,y=26$ found
the solution of $a,b$ will meet the following equation:
$3a^2+6ab-b^2+1=0\,\, (a,b\in N)$
I wrote a computer program if b<1000000
the corresponding solution of :
[TABLE="width: 183"]
[TR]
[TD="width: 133, bgcolor: transparent"]x=$a^2+ab$

[/TD]
[TD="width: 110, bgcolor: transparent"]y=$ab$

[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]30
[/TD]
[TD="bgcolor: transparent"]26
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]5852
[/TD]
[TD="bgcolor: transparent"]5068
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]1135290
[/TD]
[TD="bgcolor: transparent"]983190
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]220240440
[/TD]
[TD="bgcolor: transparent"]190733816
[/TD]
[/TR]
[TR]
[TD="bgcolor: transparent"]42725510102
[/TD]
[TD="bgcolor: transparent"]37001377138
[/TD]
[/TR]
[/TABLE]
[TABLE="width: 195"]
[TR]
[TD="width: 127, bgcolor: transparent, align: right"][/TD]
[TD="width: 133, bgcolor: transparent, align: right"][/TD]
[/TR]
[TR]
[TD="bgcolor: transparent, align: right"][/TD]
[TD="bgcolor: transparent, align: right"][/TD]
[/TR]
[TR]
[TD="bgcolor: transparent, align: right"][/TD]
[TD="bgcolor: transparent, align: right"][/TD]
[/TR]
[TR]
[TD="bgcolor: transparent, align: right"][/TD]
[TD="bgcolor: transparent, align: right"][/TD]
[/TR]
[TR]
[TD="bgcolor: transparent, align: right"][/TD]
[TD="bgcolor: transparent, align: right"][/TD]
[/TR]
[/TABLE]
 
Last edited:
kaliprasad said:
show that for x,y positive integers satisfying $3x^2+x= 4y^2+y$ each of x-y , 3x+3y+ 1 and 4x + 4y + 1 are squares. ( above equation has atleast one solution x= 30 and y = 26)

hint

$3x^2+x = 4y^2 + y$
or $3x^2- 3y^2 + x - y = y^2$
or $3(x+y)(x-y) + (x-y) = y^2$
or $(3x+3y+1)(x-y) = y^2$
 
hint 2

$4x^2-4y^2 + x-y=x^2$
or $4(x-y)(x+y) + (x-y) = x^2$
or $(x-y)(4x+4y+1) = x^2$
 
we have $3x^2+x = 4y^2 + y$
or $3x^2- 3y^2 + x - y = y^2$
or $3(x+y)(x-y) + (x-y) = y^2$
or $(3x+3y+1)(x-y) = y^2\cdots\, 1$also

$4x^2-4y^2 + x-y=x^2$
or $4(x-y)(x+y) + (x-y) = x^2$
or $(x-y)(4x+4y+1) = x^2\cdots\,2 $multiply (1) and (2) to get $(x-y)^2(3x+3y+1)(4x+4y+1)=x^2y^2$

or$(3x+3y+1)(4x+4y+1)=(\dfrac{xy}{x-y})^2$so $(3x+3y+1)(4x+4y+1)$ is a perfect squareas $4(3x+3y+1) - 3(4x+4y+1) = 1$ so $(3x+3y+1)$ and $(4x+4y+1)$ are coprime and hence perfect squares and the from (1) or (2) $(x-y)$ is a perfect square
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K