MHB Square root in Q(root 2) means its in Z[root 2]

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $a,b \in \mathbb{Z}$, and if $a+b\sqrt{2}$ has a square root in $\mathbb{Q}(\sqrt{2})$, then the square root is actually in $\mathbb{Z}[\sqrt{2}]$.

Only one approach comes to my mind. Let $r_1, r_2 \in \mathbb{Q}$ such that $a+b\sqrt{2}=(r_1+r_2\sqrt{2})^2$. This gives $a=r_1^2+2r_2^2, b=2r_1r_2$. I need to somehow show that $r_1, r_2$ are integers. I played with the above equations putting $r_i=p_i/q_i$ with $\gcd (p_i,q_i)=1$. But I couldn't conclude anything.
 
Physics news on Phys.org
caffeinemachine said:
Let $a,b \in \mathbb{Z}$, and if $a+b\sqrt{2}$ has a square root in $\mathbb{Q}(\sqrt{2})$, then the square root is actually in $\mathbb{Z}[\sqrt{2}]$.

Only one approach comes to my mind. Let $r_1, r_2 \in \mathbb{Q}$ such that $a+b\sqrt{2}=(r_1+r_2\sqrt{2})^2$. This gives $a=r_1^2+2r_2^2, b=2r_1r_2$. I need to somehow show that $r_1, r_2$ are integers. I played with the above equations putting $r_i=p_i/q_i$ with $\gcd (p_i,q_i)=1$. But I couldn't conclude anything.
If $a+b\sqrt{2}$ has a square root in $\mathbb{Q}(\sqrt{2})$, then the square root can be written in the form $\dfrac{p+q\sqrt2}r$, where $p$, $q$ and $r$ are integers and $r$ is chosen to be positive and as small as possible (so that in particular the triple $p,\,q,\,r$ will have no common factor greater than 1).

Then $r^2(a+b\sqrt2) = (p+q\sqrt2)^2 = p^2+2q^2 + 2pq\sqrt2$, and therefore $p^2+2q^2 - r^2a = (r^2b-2pq)\sqrt2.$ But $\sqrt2$ is irrational, so no nonzero multiple of it can be an integer. Therefore $$p^2+2q^2 = r^2a, \qquad 2pq = r^2b.$$
Suppose that $r$ has an odd prime factor $\rho$. Then the second of those displayed equations shows that $\rho$ is a factor of either $p$ or $q$. The first of the displayed equations then shows that $\rho$ is a factor of both $p$ and $q$. Thus $p$, $q$ and $r$ have the common factor $\rho$, contrary to the initial assumption.

Next, suppose that $r$ is even, say $r=2s$. Then the first displayed equation becomes $p^2+2q^2 = 4s^2a$, showing that $p$ must be even, say $p=2t.$ It follows that $2t^2+q^2 = 2s^2a$, showing that $q$ is even. Thus $p$, $q$ and $r$ have the common factor 2, again contrary to the initial assumption.

The conclusion is that $r$ has no prime factors at all and is therefore equal to 1, proving that $a+b\sqrt{2}$ has a square root in $\mathbb{Z}[\sqrt{2}].$
 
Opalg said:
If $a+b\sqrt{2}$ has a square root in $\mathbb{Q}(\sqrt{2})$, then the square root can be written in the form $\dfrac{p+q\sqrt2}r$, where $p$, $q$ and $r$ are integers and $r$ is chosen to be positive and as small as possible (so that in particular the triple $p,\,q,\,r$ will have no common factor greater than 1).

Then $r^2(a+b\sqrt2) = (p+q\sqrt2)^2 = p^2+2q^2 + 2pq\sqrt2$, and therefore $p^2+2q^2 - r^2a = (r^2b-2pq)\sqrt2.$ But $\sqrt2$ is irrational, so no nonzero multiple of it can be an integer. Therefore $$p^2+2q^2 = r^2a, \qquad 2pq = r^2b.$$
Suppose that $r$ has an odd prime factor $\rho$. Then the second of those displayed equations shows that $\rho$ is a factor of either $p$ or $q$. The first of the displayed equations then shows that $\rho$ is a factor of both $p$ and $q$. Thus $p$, $q$ and $r$ have the common factor $\rho$, contrary to the initial assumption.

Next, suppose that $r$ is even, say $r=2s$. Then the first displayed equation becomes $p^2+2q^2 = 4s^2a$, showing that $p$ must be even, say $p=2t.$ It follows that $2t^2+q^2 = 2s^2a$, showing that $q$ is even. Thus $p$, $q$ and $r$ have the common factor 2, again contrary to the initial assumption.

The conclusion is that $r$ has no prime factors at all and is therefore equal to 1, proving that $a+b\sqrt{2}$ has a square root in $\mathbb{Z}[\sqrt{2}].$
Thank You so much!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top