Square Root of Complex Numbers

Click For Summary
SUMMARY

The discussion centers on the formula for finding square roots of complex numbers, specifically z = a + bi, using the expression \(\frac{1}{\sqrt{2}}(\epsilon\sqrt{|z|+a}+i\sqrt{|z|-a})\). Participants explore the derivation of this formula, referencing equations that relate real and imaginary components, and mention the use of De Moivre's theorem for deriving n-th roots in polar form. The conversation highlights the importance of understanding complex multiplication and its geometric interpretation.

PREREQUISITES
  • Complex number theory
  • Quadratic equations with complex coefficients
  • De Moivre's theorem
  • Polar and rectangular forms of complex numbers
NEXT STEPS
  • Study the derivation of square roots of complex numbers using De Moivre's theorem
  • Learn about polar coordinates and their application in complex number operations
  • Explore the geometric interpretation of complex multiplication
  • Research n-th roots of complex numbers and their non-polar derivations
USEFUL FOR

Mathematicians, physicists, and students studying complex analysis or anyone interested in the properties and applications of complex numbers.

littleHilbert
Messages
55
Reaction score
0
Hi! I've got a question.
There is a nice formula for finding square roots of arbitrary complex numbers z=a+bi:

\frac{1}{\sqrt{2}}(\epsilon\sqrt{|z|+a}+i\sqrt{|z|-a}) where
epsilon:=sing(b) if b≠0 or epsilon:=1 if b=0.

I've just looked it up and it's nice to use it to find complex roots of quadratic equations with complex coefficients.

Where does it come from? I mean, squaring shows that it's true but how can one derive it from other facts? Is there a similar formula for n-th roots (not in polar form but analogous to that above)? Any info, links?
 
Last edited:
Physics news on Phys.org
LittileHilbrt;

Let y=c+id, where y^2=z.

Then; c^2-d^2+2i c*d=a+ib.

As a result; a=c^2-d^2 (eq1) and b=2c*d (eq2).

Therefore, from eq1 and eq2; c^2 = a + (b/c)^2/4 (eq3);

Solving eq3 in c^2, we get c^2={a+sqr(a^2+b^2)}^.5 /2

Therefore, c=(+/-) sqr({a+mod(z)}/2) (eq4 ),
{the other solution is rejected as c must be real}.

Then; z^1/2 = (+/-) y = (+/-) [c + id] = (+/-) [c+id] = (+/-) [sqr({a+mod(z)})+i sign(b)* sqr({[mod(z)]^2 –a^2} / {a+mod(z)})]/sqr(2)
= (+/-) [ sqr( a+mod(z) ) + i sign(b) * sqr({mod(z)–a} ] / sqr(2)
= (+/-) [sign(b) * sqr( a+mod(z) ) + i sqr({mod(z)–a} ] / [sqr(2)* sign(b)]
====> (+/-) [sign(b) * sqr( a+mod(z) ) + i sqr({mod(z)–a} ] / [sqr(2)]

Solving these equaitons when b=0 will need some modifications. By the way, when b is zero, z is real.

Amr Morsi.
 
It can probably be derived with few identities and Demoivre's theorem.
 
You could always convert the number to e^(x + iy) form, divide x and y by 2, convert back to normal form. I think that should work.
 
littleHilbert said:
Where does it come from? I mean, squaring shows that it's true but how can one derive it from other facts? Is there a similar formula for n-th roots (not in polar form but analogous to that above)? Any info, links?
littleHilbert,

When you multiply by a complex number, you are rotating the other number
by the angle the complex number makes with the x-axis.

For example, multiplication by "i" makes a rotation of 90 degrees. Therefore
a multiplication by the square of "i" makes a rotation of 180 degrees or -1.
Hence "i" is the square root of -1.

If you want the "n-th root" of a number; express it in polar form, and
divide the angle by "n". You will get the polar expression for the n-th
root. Use trigonometric identities to transform back into the non-polar
form in terms of the components of the original complex number.
Normalize appropriately if the modulus of the number is not unity.

That's how the formula you cite above is derived.

Dr. Gregory Greenman
Physicist
 
the question is..take the identity:

(\sqrt (-2)+1)(\sqrt (-2)-1)=-2 and expand it by a continuous fraction..what would we get..
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 45 ·
2
Replies
45
Views
6K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K