Ssecond moment of area for a aerofoil.

  • Thread starter Thread starter tonymontana
  • Start date Start date
  • Tags Tags
    Area Moment
Click For Summary
SUMMARY

The discussion focuses on calculating the second moment of area for an aerofoil shape defined by the polynomial equation y=2.391x^5 + 6.784x^4 + 7.193x^3 - 3.647x^2 + 0.839x + 0.011. The user seeks to determine the values of I_xx, I_yy, and I_xy, using the integral formulas for these moments. Key points include the approximation of differential area (DA) as 1.dy and the importance of understanding the curve's domain and range for accurate calculations. The user also inquires about the axis of symmetry and the units of measurement for x and y.

PREREQUISITES
  • Understanding of calculus, specifically integration techniques.
  • Familiarity with the concept of the second moment of area in structural engineering.
  • Knowledge of polynomial equations and their graphical representations.
  • Basic understanding of coordinate systems and units of measurement in engineering contexts.
NEXT STEPS
  • Research the calculation methods for I_xx, I_yy, and I_xy for complex shapes.
  • Study the implications of approximating DA in integral calculations.
  • Explore the significance of the axis of symmetry in structural analysis.
  • Learn about the application of numerical methods for evaluating integrals of polynomial functions.
USEFUL FOR

Engineers, particularly those in structural and aerospace fields, students studying mechanics or materials science, and anyone involved in the design and analysis of aerofoil shapes.

tonymontana
Messages
1
Reaction score
0
Hi was wondering if anyone could help?

i am after the method of calculating the second moment of area of a aerofoil shape of which I have all the cordinates. It has a consant thickness of 1mm and lookig for values for

1)I_xx
2)I_yy
3)I_xy


the equation for the half the erofoil section is

y=2.391x^5 + 6.784x^4 +7.193x^3-3.647x^2+0.839x+0.011



The Attempt at a Solution




now i know that I_xx =integral y^2 DA

and DA= 1/COS(THETA), HOWEVER CAN BE APPROXED TO 1 HENCE DA=1.dy

after that I am stuck : (
 
Physics news on Phys.org
the equation for the half the erofoil section is
y=2.391x^5 + 6.784x^4 +7.193x^3-3.647x^2+0.839x+0.011
Can you enlighten me with the axis of symmetry if the above equation is only half of the aerofoil?
Also, where does the curve begins and where does it end? Y is zero when x=0, and it goes to 14 when x=1, and 45000 when x=4.
Are x and y in metres or in mm?

now i know that I_xx =integral y^2 DA
as long as y is measured to a line passing through the centroid and parallel to the x-axis.

and DA= 1/COS(THETA), HOWEVER CAN BE APPROXED TO 1 HENCE DA=1.dy
not when x is small and dy/dx is small. Here is can be approximated by dx.

Thus it would seem risky to consider approximations without the knowledge of the domain and range of the curve.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
30K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
15K