MHB Statements about subrings and quotient

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    quotient
Click For Summary
The discussion revolves around the truth of various statements regarding the properties of subrings and quotient rings in relation to the properties of the larger ring, such as being Noetherian, Artinian, P.I.D., U.F.D., or a Euclidean domain. It is clarified that a subring does not necessarily inherit the Noetherian or Artinian properties from its containing ring, as exemplified by counter-examples involving ideals. The participants also explore the implications of being a P.I.D. and U.F.D., questioning whether these properties hold for subrings. Additionally, the correspondence theorem and the Hilbert basis theorem are mentioned as tools for understanding these relationships. The conversation emphasizes the need for counter-examples to validate or refute the initial statements.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to check if the following statement are true.

Let $R$ be a ring, $S$ a subring and $I$ an ideal.

  1. If $R$ is Noetherian then $S$ is also.
  2. If $R$ is Noetherian then $R/I$ is also.
  3. If $R$ is Artinian then $S$ is also.
  4. If $R$ is Artinian then $R/I$ is also.
  5. If $R$ is P.I.D. then $S$ is also.
  6. If $R$ is P.I.D. then $R/I$ is also.
  7. If $R$ is U.F.D. then $S$ is also.
  8. If $R$ is U.F.D. then $R/I$ is also.
  9. If $R$ is an euclidean domain then $S$ is also.
I have done the following:

  1. $R$ is Noetherian iff each increasing sequence of ideal $I_1\subseteq I_2 \subseteq I_3 \subseteq \dots \subseteq I_k\subseteq \dots $ stops, i.e., $\exists k$ such that $I_k=I_{k+1}$, right?
    Then since $S$ is a subring of $R$, not all $I_i$ are contained in $S$. Therefore, the above condition isn't necessarily satisfied. So, $S$ is not necessarily Noetherian.
    is this correct? (Wondering)
  2. What can we say in that case? Does the increasing sequence stop? (Wondering)
  3. $R$ is Artinian iff each decreasing sequence of ideal $I_1\supseteq I_2 \supseteq I_3 \supseteq \dots \supseteq I_k\supseteq \dots $ stops, i.e., $\exists k$ such that $I_k=I_{k+1}$, right?
    Then since $S$ is a subring of $R$, not all $I_i$ are contained in $S$. Therefore, the above condition isn't necessarily satisfied. So, $S$ is not necessarily Artinian.
    is this correct? (Wondering)
  4. What can we say in that case? Does the decreasing sequence stop? (Wondering)
  5. If $R$ is P.I.D. then the ideals are prime, therefore $S$ contain also only prime ideals. So, $S$ is also P.I.D., right? (Wondering)
  6. What can we say in this case? (Wondering)
  7. If $R$ is U.F.D. then $\forall r\in R\setminus \{0\}$, $r\notin U(R)$: $r=a_1 \cdots a_k$ with $a_i$ irreducible, and if $r=a_1\cdots a_k=b_1\cdots b_t$ with $a_i, b_i$ irreducible then $k=t$ and $a_i=b_iu_i$ with $u_i\in U(R), \forall i=1, \dots , k$.
    Does the same hold also for $S$ ? (Wondering)
  8. And also in this case? (Wondering)
  9. How can we check that? (Wondering)
 
Physics news on Phys.org
Your "proofs" for 1 & 3 are not correct. It is not the case that an ideal of a subring $S$ is an ideal of its containing ring $R$.

For example, $\Bbb Z$ is a subring of $\Bbb Q$, but $2\Bbb Z$ is an ideal of $\Bbb Q$, but not of $\Bbb Q$.

Also, just because some of the ideals of $R$ lie outside of $S$, does not mean that the ideals of $S$ fail to satisfy the Noetherian ascending chain condition.

What you want is a *counter-example*. Here is something to get you started on #1:

Any field is Noetherian, and any integral domain can be extended to a field. Can you find a non-Noetherian integral domain?

For 2, consider the correspondence theorem for rings.

For number 3, consider $S = \Bbb Z$. This ring is non-Artinian, can you find an Artinian ring it is a sub-ring of?

We'll discuss the other questions later.
 
Deveno said:
Any field is Noetherian, and any integral domain can be extended to a field. Can you find a non-Noetherian integral domain?

Let $K$ be a field, then $K[x_1, x_2, \dots ]$ is not Noetherian, since the chain $(x_1) \subseteq (x_1, x_2) \subseteq \dots $ never stops, or not? (Wondering)
 
Deveno said:
What you want is a *counter-example*. Here is something to get you started on #1:

Any field is Noetherian, and any integral domain can be extended to a field. Can you find a non-Noetherian integral domain?

Do we maybe use the Hilbert basis theorem?
Deveno said:
For 2, consider the correspondence theorem for rings.

How exactly do we use this theorem? I got stuck righ now? (Wondering)
Deveno said:
For number 3, consider $S = \Bbb Z$. This ring is non-Artinian, can you find an Artinian ring it is a sub-ring of?

The only ideals of $\mathbb{R}$ are $0$ and $\mathbb{R}$.
So, the sequence $\mathbb{R}\supset 0$ is finite, therefore $\mathbb{R}$ is Artinian, right? (Wondering)
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 71 ·
3
Replies
71
Views
13K
  • · Replies 51 ·
2
Replies
51
Views
10K
  • · Replies 175 ·
6
Replies
175
Views
26K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K