Math Challenge - October 2018

Click For Summary

Discussion Overview

This thread presents a series of mathematical challenges covering various topics, including calculus, algebra, topology, and analysis. Participants are encouraged to provide full derivations or proofs for their solutions, and the discussion includes both solved and unsolved problems.

Discussion Character

  • Exploratory
  • Technical explanation
  • Homework-related
  • Mathematical reasoning

Main Points Raised

  • Participants discuss the rules for submitting solutions, emphasizing the need for full proofs and the prohibition of direct searches for solutions.
  • Several mathematical problems are posed, including a Lagrangian differential equation, properties of σ-algebras, polynomial divisibility, and integrals involving piecewise functions.
  • Some participants propose methods for solving integrals and series, while others present challenges related to convergence and properties of functions.
  • Specific problems involve sequences, polynomials, and group theory, with some participants providing solutions while others seek clarification or further exploration of the problems.
  • High school-level problems are marked, inviting participation from students and others interested in those challenges.

Areas of Agreement / Disagreement

There is no consensus on the solutions to the problems, as many remain open for discussion. Some problems have been solved by participants, while others are still under consideration, indicating a mix of agreement on certain solutions and ongoing debate on others.

Contextual Notes

Some problems may depend on specific mathematical definitions or assumptions that are not fully articulated in the thread. Additionally, the complexity of certain problems may lead to varying interpretations and approaches among participants.

Who May Find This Useful

Mathematicians, students, and enthusiasts interested in problem-solving, mathematical proofs, and exploring advanced topics in mathematics may find this thread beneficial.

  • #61
fresh_42 said:
I don't see why you can swap limit and sum in 7.c), i.e. why ##\sum_{\mathbb{N}}f_n(x) = 0##. This wasn't what you have shown.

... you know that you can look up the solutions?
I just spent some time figuring that I was wrong, the ##f_n(x)## in 7 c) should have been ##s_n(x):=\sum_n f_n(x)##. Sorry, I'll fix it...

I realize the solutions are posted on or about the 15th of each month but I do this because I am bored, and doing this sharpens my skills.
 
Physics news on Phys.org
  • #62
benorin said:
... and doing this sharpens my skills.
Only if you are accurate in your arguments. Fubini and the existence of an integral with a limit as boundary require a note to prove that you know what you are doing.

And a sum over something small doesn't need to be zero. The harmonic series is the best example.
 
  • #63
fresh_42 said:
7. a) Determine ##\int_1^\infty \frac{\log(x)}{x^3}\,dx\,.##
7. b) Determine for which ##\alpha## the integral ##\int_0^\infty x^2\exp(-\alpha x)\,dx## converges.
7. c) Find a sequence of functions ##f_n\, : \,\mathbb{R}\longrightarrow \mathbb{R}\, , \,n\in \mathbb{N}## such that $$\sum_\mathbb{N}\int_\mathbb{R}f_n(x)\,dx \neq \int_\mathbb{R}\left(\sum_\mathbb{N}f_n(x) \right) \,dx$$
7. d) Find a family of functions ##f_r\, : \,\mathbb{R}^+\longrightarrow \mathbb{R}\, , \,r\in \mathbb{R}## such that
$$
\lim_{r \to 0}\int_\mathbb{R}f_r(x)\,dx \neq \int_\mathbb{R} \lim_{r \to 0} f_r(x) \,dx
$$
7. e) Find an example for which
$$
\dfrac{d}{dx}\int_\mathbb{R}f(x,y)\,dy \neq \int_\mathbb{R}\dfrac{\partial}{\partial x}f(x,y)\,dy
$$
(by @fresh_42 )
7. a) Let ##I_a:=\int_1^\infty \frac{\log(x)}{x^3}\,dx##. Let ##x=e^u\Rightarrow dx=e^u du## hence

$$I_a=\int_0^\infty ue^{-3u}e^u \, du=\int_0^\infty ue^{-2u}\, du=\int_0^\infty \tfrac{v}{2}e^{-v}\, \tfrac{dv}{2}=\tfrac{1}{4}\Gamma (2)=\boxed{\tfrac{1}{4}}$$

7. b) Determine for which ##\alpha## the integral ##\int_0^\infty x^2\exp(-\alpha x)\,dx## converges.
Let ##I_{\alpha}:=\int_0^\infty x^2e^{-\alpha x}\,dx##. For ##\alpha## positive, let ##u=\alpha x##, then

$$I_{\alpha}=\int_0^\infty \left( \tfrac{u}{\alpha}\right) ^2e^{-u}\,\tfrac{du}{\alpha}=\tfrac{1}{\alpha ^3}\int_0^\infty u^2e^{-u}\,du=\tfrac{1}{\alpha ^3}\Gamma (3)=\tfrac{2}{\alpha ^3}$$

Hence ##I_{\alpha}## converges for positive ##\alpha##. ##I_{\alpha}## obviously diverges for ##\alpha## non-positive. Let ##\alpha :=a+b i## then ##\left| I_{a+b i}\right| \leq\tfrac{2}{a^3}## whenever ##a>0##. Hence ##I_{\alpha}## converges for ##\Re \left[\alpha \right] >0##.

7. c) Find a sequence of functions ##f_n\, : \,\mathbb{R}\longrightarrow \mathbb{R}\, , \,n\in \mathbb{N}## such that $$\sum_\mathbb{N}\int_\mathbb{R}f_n(x)\,dx \neq \int_\mathbb{R}\left(\sum_\mathbb{N}f_n(x) \right) \,dx$$f

Define ##f_0(x):=\begin{cases}xe^{-\tfrac{1}{2}x^2}& \text{if } x\geq 0 \\0 & \text{ otherwise }\end{cases}##
and
##f_n (x) := \begin{cases} x e^{-\tfrac{1}{2} x^2} + \sum_{k=2}^{n} \left[ x k e^{-\tfrac{1}{2} k x^2}-x (k-1) e^{-\tfrac{1}{2} (k-1) x^2}\right] & \text{ if } x\geq 0 \\0 & \text{ otherwise} \end{cases}##

Aside: Let ##|a|<1##. Consider the sequence ##\left\{ na^n\right\}##: this sequence trivially converges to zero if ##a=0##. For ##0<|a|<1##, we may write, with ##\theta >0##

$$|a|=\tfrac{1}{1+\theta}\Rightarrow |a^n|=\tfrac{1}{1+\binom{n}{1}\theta +\cdots +\binom{n}{n}\theta ^n}$$

so we have for ##n=1, 2, 3,\ldots##,

$$|a^n|<\tfrac{1}{1+\binom{n}{2}\theta ^2}\Rightarrow |na^n|<\tfrac{1\cdot 2}{(n-1)\theta ^2}$$

Thus we have ##|na^n|<\epsilon ,## as soon as, ##\tfrac{1\cdot 2}{(n-1)\theta ^2}< \epsilon##
i.e. for every $$n>1+\tfrac{2}{\epsilon \cdot \theta ^2}$$
Hence ##na^n\rightarrow 0## for ##|a|<1##. End Aside.

Back to our sequence of functions ##\left\{ f_n\right\}##: Let ##s_n(x):=\sum_{k=1}^n f_k(x) = xne^{-\tfrac{1}{2}nx^2}##

$$\sum_\mathbb{N}\int_\mathbb{R}f_n(x)\,dx$$
$$=\sum_{n=1}^\infty \int_{0}^\infty\left\{ xe^{-\tfrac{1}{2}x^2} +x\sum_{k=2}^{n} \left[ ke^{-\tfrac{1}{2}kx^2}-(k-1)e^{-\tfrac{1}{2}(k-1)x^2}\right] \right\} \,dx$$
$$=\sum_{n=1}^\infty\left\{ \int_{0}^\infty xe^{-\tfrac{1}{2}x^2}dx +\sum_{k=2}^{n} \left[ \int_{0}^{\infty} xke^{-\tfrac{1}{2}kx^2}dx-\int_{0}^\infty x(k-1)e^{-\tfrac{1}{2}(k-1)x^2}dx\right] \right\}$$
$$=\sum_{n=1}^\infty\left\{ \tfrac{1}{2}\int_{0}^\infty e^{-u_1}du_1 +\sum_{k=2}^{n} \left[ \int_{0}^{\infty} e^{-u_2}du_2-\int_{0}^\infty e^{-u_3}du_3\right] \right\}$$
$$=\sum_{n=1}^\infty\left\{ \tfrac{1}{2}\Gamma (1) +\sum_{k=2}^{n} \left[ \Gamma(1)-\Gamma (1)\right] \right\} =\tfrac{1}{2}\sum_{n=1}^\infty \Gamma (1) \rightarrow +\infty$$

By the aside with ##a=e^{-\tfrac{1}{2}x^2}<1\forall x>0##, we have

##\int_\mathbb{R}\left(\sum_\mathbb{N}f_n(x) \right) \,dx=\int_\mathbb{R}\left(\lim_{n\to\infty}s_n(x) \right) \,dx=\int_\mathbb{R} 0 \, dx=0##

hence

$$\sum_\mathbb{N}\int_\mathbb{R}f_n(x)\,dx \neq \int_\mathbb{R}\left(\sum_\mathbb{N}f_n(x) \right) \,dx$$

7. d) Find a family of functions ##f_r\, : \,\mathbb{R}^+\longrightarrow \mathbb{R}\, , \,r\in \mathbb{R}## such that
$$\lim_{r \to 0}\int_\mathbb{R}f_r(x)\,dx\neq \int_\mathbb{R} \lim_{r \to 0} f_r(x) \,dx$$

Define ##f_r(x):=\begin{cases}\left\|\tfrac{1}{r}\right\| x(1-x^2)^{\left\|\tfrac{1}{r}\right\| }& \text{if } 0\leq x \leq 1 \\0 & \text{ otherwise } \end{cases}##

where ##\left\| y\right\|:=\text{nint}(y)##. Let n be the integer ##n:=\left\| \tfrac{1}{r}\right\|##,

$$\lim_{r \to 0}\int_\mathbb{R}f_r(x)\,dx=\lim_{r \to 0}\int_{0}^{1}\left\|\tfrac{1}{r}\right\| x(1-x^2)^{\left\|\tfrac{1}{r}\right\| }\, dx$$
$$ =\lim_{n \to \infty}\tfrac{n}{2}\int_{0}^{1}u^{n}\, du =\lim_{n \to \infty}\tfrac{n}{2(n+1)}=\tfrac{1}{2} $$
but
$$ \int_{\mathbb{R}} \lim_{r \to 0} f_r(x) \, dx = \int_{0}^{1} \lim_{r \to 0} \left\| \tfrac{1}{r} \right\| x(1-x^2)^{ \left\| \tfrac{1}{r} \right\|} \, dx $$
$$ = \int_{0}^{1} \lim_{n \to\infty} n x(1-x^2)^{n}\,dx =0 $$
where the limit was evaluated by the aside to problem 7 c). Hence
$$\lim_{r \to 0}\int_\mathbb{R}f_r(x)\,dx\neq \int_\mathbb{R} \lim_{r \to 0} f_r(x) \,dx$$

7. e) Find an example for which
$$\dfrac{d}{dx}\int_\mathbb{R}f(x,y)\,dy \neq \int_\mathbb{R}\dfrac{\partial}{\partial x}f(x,y)\,dy$$

This is baby Rudin pg. 242 ch 9 exercise #28:

Let ##f(x,y)=\begin{cases} y-2\sqrt{-x} & \text{if } \sqrt{|x|}\leq y \leq 2\sqrt{|x|} \wedge x<0 \\ -y & \text{if } 0 \leq y \leq \sqrt{|x|} \wedge x< 0 \\ y & \text{if } 0 \leq y \leq \sqrt{x} \wedge x\geq 0 \\ -y+2\sqrt{x} & \text{if } \sqrt{x}\leq y \leq 2\sqrt{x} \wedge x\geq 0 \\ 0 & \text{ otherwise} \end{cases}##

Let ##g(x):=\int_{\mathbb{R}}f(x,y)\, dy=\begin{cases} \int_{\sqrt{-x}}^{2\sqrt{-x}}( y-2\sqrt{-x})\, dy-\int_{0}^{\sqrt{-x}}y\, dy & \text{if } x<0 \\ \int_{0}^{\sqrt{x}}y\, dy+\int_{\sqrt{x}}^{2\sqrt{x}}(-y+2\sqrt{x})\, dy & \text{if } x\geq 0 \end{cases}##

Recall the formula for differentiating under the integral sign:

$$\boxed{\frac{d}{dx}\int_{a(x)}^{b(x)} h(x,y)\, dy =\int_{a(x)}^{b(x)} \tfrac{\partial h}{\partial x}\, dy + h(x,b(x)\tfrac{db}{dx}-h(x,a(x)\tfrac{da}{dx}}$$

Then, differentiating under the integral sign, we have

$$g^{\prime}(x)=
\begin{cases} \int_{\sqrt{-x}}^{2\sqrt{-x}}\left( y+\tfrac{1}{\sqrt{-x}}\right)\, dy+0-(-\sqrt{-x})\left( -\tfrac{1}{\sqrt{-x}}\right) -0-(\sqrt{-x})\left( -\tfrac{1}{2\sqrt{-x}}\right)+0 & \text{if } x<0 \\ 0+(\sqrt{x})\left( \tfrac{1}{2\sqrt{x}}\right) -0+\int_{\sqrt{x}}^{2\sqrt{x}}\left( -y+\tfrac{1}{\sqrt{x}}\right) \, dy +0-(\sqrt{x})\left( \tfrac{1}{2\sqrt{x}}\right) & \text{if } x\geq 0 \end{cases}$$
cc
$$\Rightarrow g^{\prime}(x)=\begin{cases} \left[ \tfrac{1}{2}y^2+\tfrac{y}{\sqrt{-x}}\right|_{y=\sqrt{-x}}^{2\sqrt{-x}} & \text{if } x<0 \\ \left[ -\tfrac{1}{2}y^2+\tfrac{y}{\sqrt{x}}\right|_{y=\sqrt{x}}^{2\sqrt{x}}& \text{if } x\geq 0 \end{cases}=\begin{cases} \tfrac{3}{2}|x|+1 & \text{if } x<0 \\ -\tfrac{3}{2}x+1& \text{if } x\geq 0 \end{cases}=1-\tfrac{3}{2}x$$
$$\Rightarrow \boxed{g^{\prime}(x)=1-\tfrac{3}{2}x, \, \, \forall x\in\mathbb{R}}$$

Now ##f_{x}(x,y)=\begin{cases} \tfrac{1}{\sqrt{-x}} & \text{if } \sqrt{|x|}\leq y \leq 2\sqrt{|x|} \wedge x<0 \\ 0 & \text{if } 0 \leq y \leq \sqrt{|x|} \wedge x< 0 \\ 0 & \text{if } 0 \leq y \leq \sqrt{x} \wedge x\geq 0 \\ \tfrac{1}{\sqrt{x}} & \text{if } \sqrt{x}\leq y \leq 2\sqrt{x} \wedge x\geq 0 \\ 0 & \text{ otherwise} \end{cases}##

Hence

$$F(x):=\int_{\mathbb{R}}f_{x}(x,y)\, dy =\begin{cases} \int_{\sqrt{-x}}^{\sqrt{-x}}\tfrac{dy}{\sqrt{-x}}+0 & \text{if } x<0 \\ 0+ \int_{\sqrt{x}}^{\sqrt{x}}\tfrac{dy}{\sqrt{x}} & \text{if } x<0 \\ 0 & \text{if } x=0 \end{cases}$$
$$\boxed{F(x)=\begin{cases} 1 & \text{if } |x|>0 \\ 0 & \text{if } x=0 \end{cases}}$$

thus indeed

$$F(x):=\int_{\mathbb{R}}f_{x}(x,y)\, dy \neq \tfrac{d}{dx}\int_{\mathbb{R}}f(x,y)\, dy =: g^{\prime}(x)$$
 
Last edited:
  • #65
benorin said:
I fixed 7c) above @fresh_42
Again, I don't see that your sum is zero. If it goes to zero at infinity, there is still something to add (integrate) for small numbers. The sum itself isn't zero. At least I don't see it.
 
  • #66
The definition of ##f_n(x)## is telescopic, giving the nth partial sum ##s_n(x):=\sum_{k=1}^n f_k(x) = xne^{-\tfrac{1}{2}nx^2}\rightarrow 0## as ##n\to\infty##, clear?
 
  • #67
No, clear is something else. You should have described this idea and demonstrated that it works. But the idea is correct. However, you don't need such a complicated function. A simple step does the same: "mass vanishes to infinity".
benorin said:
I realize the solutions are posted on or about the 15th of each month ...
No, I meant that I've published my solutions here:
https://www.physicsforums.com/threads/solution-manuals-for-the-math-challenges.977057/

And I have taken many known theorems, inequalities etc. so it is worth trying! Mostly.
 
  • #68
benorin said:
4) b) $$\int_A \frac{1}{x^2+y}\, d\lambda(x,y) =\int_0^1\int_0^1 \frac{dydx}{x^2+y} =\int_0^1\left[\log (x^2+y) \right|_{y=0}^1\, dx$$
$$\vdots$$
$$ = \tfrac{\pi}{2}+\log 2$$

Let ##I_{( a , b )}:=\int_{( a , b ) ^2} \frac{1}{x^2+y^2}\, d\lambda(x,y)##.
Clearly ##J:=\int_A \frac{1}{x^2+y}\, d\lambda (x,y) \leq I_{(0,1)}##.

Also, let ##B:=\left( -\tfrac{1}{2}, \tfrac{1}{2}\right) ^2##, then

$$J\leq I_{(0,1)}=\int_{B}\frac{d\lambda (x,y)}{\left(x-\tfrac{1}{2}\right) ^2+\left(y-\tfrac{1}{2}\right) ^2}=\int_{B}\frac{d\lambda (x,y)}{\left(x+\tfrac{1}{2}\right) ^2+\left(y+\tfrac{1}{2}\right) ^2}$$
$$\Rightarrow 2I_{(0,1)} =\int_{B}\left[ \frac{1}{\left(x-\tfrac{1}{2}\right) ^2+\left(y-\tfrac{1}{2}\right) ^2}+\frac{1}{\left(x+\tfrac{1}{2}\right) ^2+\left(y+\tfrac{1}{2}\right) ^2}\right] d\lambda (x,y) $$
$$= \int_{B} \frac{4(2x^2+2y^2+1)}{\left(2x^2+2y^2+2x+2y+1\right) \left(2x^2+2y^2-2x-2y+1\right) } d\lambda (x,y)$$
$$\leq \int_{B} \frac{4(2x^2+2y^2+1)}{\left(2x^2+2y^2+1\right) \left(2x^2+2y^2-2x-2y+1\right) } d\lambda (x,y)$$
$$= \int_{B} \frac{4}{\left(2x^2+2y^2+2x+2y+1\right) } d\lambda (x,y)$$
$$\leq \int_{B} \frac{4}{\left(2x^2+2y^2+1\right) } d\lambda (x,y)$$

and since ##(x,y)\in B\Rightarrow 1\leq 2x^2+2y^2+1\leq 2## we may extend the inequality chain further to

$$J\leq \int_{B} \frac{4\left(2x^2+2y^2+1\right) }{\left(2x^2+2y^2+1\right) } d\lambda (x,y) =4\lambda (B) = 4 <+\infty$$

hence ##J:=\int_A \frac{1}{x^2+y}\, d\lambda (x,y)## exists and is finite, and therefore by the theorem of Fubini and the previous post ##J=\tfrac{\pi}{2}+\log 2\approx 2.26394\ldots##.

Note: @fresh_42 how did you get off so easy in the solutions? You said "By Fubini... *straight to double integral*" w/o proving it was finite, probably I just did way more than I needed to...
 
  • #69
benorin said:
Let ##I_{( a , b )}:=\int_{( a , b ) ^2} \frac{1}{x^2+y^2}\, d\lambda(x,y)##.
Clearly ##J:=\int_A \frac{1}{x^2+y}\, d\lambda (x,y) \leq I_{(0,1)}##.

Also, let ##B:=\left( -\tfrac{1}{2}, \tfrac{1}{2}\right) ^2##, then

$$J\leq I_{(0,1)}=\int_{B}\frac{d\lambda (x,y)}{\left(x-\tfrac{1}{2}\right) ^2+\left(y-\tfrac{1}{2}\right) ^2}=\int_{B}\frac{d\lambda (x,y)}{\left(x+\tfrac{1}{2}\right) ^2+\left(y+\tfrac{1}{2}\right) ^2}$$
$$\Rightarrow 2I_{(0,1)} =\int_{B}\left[ \frac{1}{\left(x-\tfrac{1}{2}\right) ^2+\left(y-\tfrac{1}{2}\right) ^2}+\frac{1}{\left(x+\tfrac{1}{2}\right) ^2+\left(y+\tfrac{1}{2}\right) ^2}\right] d\lambda (x,y) $$
$$= \int_{B} \frac{4(2x^2+2y^2+1)}{\left(2x^2+2y^2+2x+2y+1\right) \left(2x^2+2y^2-2x-2y+1\right) } d\lambda (x,y)$$
$$\leq \int_{B} \frac{4(2x^2+2y^2+1)}{\left(2x^2+2y^2+1\right) \left(2x^2+2y^2-2x-2y+1\right) } d\lambda (x,y)$$
$$= \int_{B} \frac{4}{\left(2x^2+2y^2+2x+2y+1\right) } d\lambda (x,y)$$
$$\leq \int_{B} \frac{4}{\left(2x^2+2y^2+1\right) } d\lambda (x,y)$$

and since ##(x,y)\in B\Rightarrow 1\leq 2x^2+2y^2+1\leq 2## we may extend the inequality chain further to

$$J\leq \int_{B} \frac{4\left(2x^2+2y^2+1\right) }{\left(2x^2+2y^2+1\right) } d\lambda (x,y) =4\lambda (B) = 4 <+\infty$$

hence ##J:=\int_A \frac{1}{x^2+y}\, d\lambda (x,y)## exists and is finite, and therefore by the theorem of Fubini and the previous post ##J=\tfrac{\pi}{2}+\log 2\approx 2.26394\ldots##.

Note: @fresh_42 how did you get off so easy in the solutions? You said "By Fubini... *straight to double integral*" w/o proving it was finite, probably I just did way more than I needed to...

I didn't attempt to show it is finite, but here is something you can try: Show that

$$\int_A |f(x,y)| \lambda(dx,dy) < \infty$$

On positive functions, you can apply Fubini without trouble so now you are allowed to use it.
 
  • #70
The entire thing is positive, continuous and bounded, so Fubini applies. Mentioning these facts is sufficient. Otherwise we have to state first which version of Fubini we are talking about, so that we can prove the conditions needed for that version. It's only that one has to check as soon as there is a multiple integral. Especially physicists tend to exchange whatever comes along: limits, summations, integrals, differentiation. Those problems you have solved were meant as a reminder that things can be more complicated in general.
 
  • #71
fresh_42 said:
The entire thing is positive, continuous and bounded, so Fubini applies.
^This.
That is what I should have answered to the Q: "Justify the initial equality by which theorem?" Except for at the origin, a singlet of measure zero. But that the integrand was unbounded thereat seemed to justify a little caution on my part; that and not knowing which Fubini Theorem variant to use. But then you both are experts, @fresh_42 strikes me as a seasoned Analysis prof, or the equivalent in terms of wit.
 

Similar threads

  • · Replies 61 ·
3
Replies
61
Views
12K
  • · Replies 42 ·
2
Replies
42
Views
11K
  • · Replies 61 ·
3
Replies
61
Views
13K
  • · Replies 80 ·
3
Replies
80
Views
10K
  • · Replies 93 ·
4
Replies
93
Views
16K
  • · Replies 67 ·
3
Replies
67
Views
12K
  • · Replies 33 ·
2
Replies
33
Views
9K
  • · Replies 100 ·
4
Replies
100
Views
12K
  • · Replies 86 ·
3
Replies
86
Views
14K
  • · Replies 60 ·
3
Replies
60
Views
12K