Graduate Static Gravitational Field: Why Must ##g_{m0} = 0##?

Click For Summary
SUMMARY

In Dirac's "General Theory of Relativity," it is established that in a static gravitational field, the metric components must satisfy the condition ##g_{m0} = 0## for spatial indices ##m = 1, 2, 3##. This is due to the requirement that the timelike Killing vector field is orthogonal to spacelike surfaces, ensuring that the metric does not contain cross terms involving time and space coordinates. The assertion holds true specifically within a static coordinate system, where the components of the metric are constant in time and surfaces of constant time are orthogonal to the time direction.

PREREQUISITES
  • Understanding of general relativity concepts, particularly static gravitational fields.
  • Familiarity with the metric tensor and its components in spacetime.
  • Knowledge of Killing vector fields and their significance in spacetime symmetries.
  • Basic grasp of coordinate transformations in differential geometry.
NEXT STEPS
  • Study the properties of Killing vector fields in general relativity.
  • Explore the implications of static versus stationary spacetimes in gravitational theory.
  • Learn about the construction and interpretation of the metric tensor in various coordinate systems.
  • Investigate the mathematical framework of hypersurface orthogonality in static spacetimes.
USEFUL FOR

The discussion is beneficial for theoretical physicists, graduate students in general relativity, and researchers focusing on gravitational theories and spacetime geometry.

Kostik
Messages
274
Reaction score
32
TL;DR
Explaining Dirac's assertion ("GTR", Ch. 16) that in a static gravitational field we must have ##g_{m0} = 0, m=1,2,3)##.
In Dirac's "General Theory of Relativity", he begins Chap 16, with "Let us consider a static gravitational field and refer it to a static coordinate system. The ##g_{\mu\nu}## are then constant in time, ##g_{\mu\nu,0}=0##. Further, we must have ##g_{m0} = 0, (m=1,2,3)##."

It's obvious that static ##\rightarrow g_{\mu\nu,0}=0##, but why must ##g_{m0} = 0## ?

What I can think of is this. First, think of ordinary 3D space. Suppose there is no curvature in one of the dimensions, say the ##x^1## dimension. Then the metric ##ds^2 = g_{mn} dx^m dx^n## should have no ##dx^1 dx^2## or ##dx^1 dx^3## terms, since translating along the ##x^1## coordinate direction should not alter how ##ds^2## depends upon ##x^2## or ##x^3##.

In the same way, there should be no ##dx^0 dx^m## terms in the metric if the curvature of spacetime is static in time.

Alternatively, if I make the change of coordinates ##x'^0=x^0+\text{constant}##, and ##x'^m=x^m## (##m=1,2,3##), and if the gravitational field is static, then ##g'_{\mu\nu}=g_{\mu\nu}## (because the time translation cannot alter spacetime intervals). Hence, ##g_{\mu\nu} dx'^\mu dx'^\nu = g_{\mu\nu} dx^\mu dx^\nu##, which implies there are no ##dx^0 dx^m## terms in the metric.

Is this the right way to explain Dirac's assertion?
 
Last edited:
  • Like
Likes dextercioby
Physics news on Phys.org
A static field is one in which the timelike Killing field is everywhere orthogonal to the spacelike surfaces. Thus a vector (1,0,0,0), parallel to the Killing field, must be orthogonal to all vectors (0,a,b,c) that lie in the spacelike planes. The only way that happens is if ##g_{m0}=0##.
 
  • Like
Likes cianfa72 and topsquark
Contrast this to a stationary spacetime.
 
  • Like
Likes cianfa72, vanhees71 and topsquark
Kostik said:
In Dirac's "General Theory of Relativity", he begins Chap 16, with "Let us consider a static gravitational field and refer it to a static coordinate system. The ##g_{\mu\nu}## are then constant in time, ##g_{\mu\nu,0}=0##. Further, we must have ##g_{m0} = 0, (m=1,2,3)##."
Note the key phrase: "and refer it to a static coordinate system". His assertion is only true for such a coordinate system.

The modern way of making this point would be to say that in a static spacetime it is always possible to find a coordinate chart with no ##g_{m0}## cross terms. This is because a static spacetime has a timelike Killing vector field that is hypersurface orthogonal. But it is not necessary for any coordinate chart on a static spacetime to have no ##g_{m0}## cross terms. It is only possible. (Whereas, as @Orodruin mentioned, in a spacetime that is stationary but not static, it is not possible to find such a coordinate chart.)
 
  • Like
Likes cianfa72, vanhees71, topsquark and 1 other person
PeterDonis said:
Note the key phrase: "and refer it to a static coordinate system". His assertion is only true for such a coordinate system.

The modern way of making this point would be to say that in a static spacetime it is always possible to find a coordinate chart with no ##g_{m0}## cross terms. This is because a static spacetime has a timelike Killing vector field that is hypersurface orthogonal. But it is not necessary for any coordinate chart on a static spacetime to have no ##g_{m0}## cross terms. It is only possible. (Whereas, as @Orodruin mentioned, in a spacetime that is stationary but not static, it is not possible to find such a coordinate chart.)
Can you explain / clarify what a "static coordinate system" is, in non-modern language (i.e., the way Dirac would have explained it in 1975)?
 
One where the components of ##g## do not depend on ##x^0## and surfaces of constant ##x^0## are orthogonal to the ##x^0## direction.
 
  • Like
Likes PeterDonis, topsquark and vanhees71

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
657
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 76 ·
3
Replies
76
Views
4K
  • · Replies 8 ·
Replies
8
Views
1K