A Static Gravitational Field: Why Must ##g_{m0} = 0##?

Kostik
Messages
269
Reaction score
32
TL;DR Summary
Explaining Dirac's assertion ("GTR", Ch. 16) that in a static gravitational field we must have ##g_{m0} = 0, m=1,2,3)##.
In Dirac's "General Theory of Relativity", he begins Chap 16, with "Let us consider a static gravitational field and refer it to a static coordinate system. The ##g_{\mu\nu}## are then constant in time, ##g_{\mu\nu,0}=0##. Further, we must have ##g_{m0} = 0, (m=1,2,3)##."

It's obvious that static ##\rightarrow g_{\mu\nu,0}=0##, but why must ##g_{m0} = 0## ?

What I can think of is this. First, think of ordinary 3D space. Suppose there is no curvature in one of the dimensions, say the ##x^1## dimension. Then the metric ##ds^2 = g_{mn} dx^m dx^n## should have no ##dx^1 dx^2## or ##dx^1 dx^3## terms, since translating along the ##x^1## coordinate direction should not alter how ##ds^2## depends upon ##x^2## or ##x^3##.

In the same way, there should be no ##dx^0 dx^m## terms in the metric if the curvature of spacetime is static in time.

Alternatively, if I make the change of coordinates ##x'^0=x^0+\text{constant}##, and ##x'^m=x^m## (##m=1,2,3##), and if the gravitational field is static, then ##g'_{\mu\nu}=g_{\mu\nu}## (because the time translation cannot alter spacetime intervals). Hence, ##g_{\mu\nu} dx'^\mu dx'^\nu = g_{\mu\nu} dx^\mu dx^\nu##, which implies there are no ##dx^0 dx^m## terms in the metric.

Is this the right way to explain Dirac's assertion?
 
Last edited:
  • Like
Likes dextercioby
Physics news on Phys.org
A static field is one in which the timelike Killing field is everywhere orthogonal to the spacelike surfaces. Thus a vector (1,0,0,0), parallel to the Killing field, must be orthogonal to all vectors (0,a,b,c) that lie in the spacelike planes. The only way that happens is if ##g_{m0}=0##.
 
  • Like
Likes cianfa72 and topsquark
Contrast this to a stationary spacetime.
 
  • Like
Likes cianfa72, vanhees71 and topsquark
Kostik said:
In Dirac's "General Theory of Relativity", he begins Chap 16, with "Let us consider a static gravitational field and refer it to a static coordinate system. The ##g_{\mu\nu}## are then constant in time, ##g_{\mu\nu,0}=0##. Further, we must have ##g_{m0} = 0, (m=1,2,3)##."
Note the key phrase: "and refer it to a static coordinate system". His assertion is only true for such a coordinate system.

The modern way of making this point would be to say that in a static spacetime it is always possible to find a coordinate chart with no ##g_{m0}## cross terms. This is because a static spacetime has a timelike Killing vector field that is hypersurface orthogonal. But it is not necessary for any coordinate chart on a static spacetime to have no ##g_{m0}## cross terms. It is only possible. (Whereas, as @Orodruin mentioned, in a spacetime that is stationary but not static, it is not possible to find such a coordinate chart.)
 
  • Like
Likes cianfa72, vanhees71, topsquark and 1 other person
PeterDonis said:
Note the key phrase: "and refer it to a static coordinate system". His assertion is only true for such a coordinate system.

The modern way of making this point would be to say that in a static spacetime it is always possible to find a coordinate chart with no ##g_{m0}## cross terms. This is because a static spacetime has a timelike Killing vector field that is hypersurface orthogonal. But it is not necessary for any coordinate chart on a static spacetime to have no ##g_{m0}## cross terms. It is only possible. (Whereas, as @Orodruin mentioned, in a spacetime that is stationary but not static, it is not possible to find such a coordinate chart.)
Can you explain / clarify what a "static coordinate system" is, in non-modern language (i.e., the way Dirac would have explained it in 1975)?
 
One where the components of ##g## do not depend on ##x^0## and surfaces of constant ##x^0## are orthogonal to the ##x^0## direction.
 
  • Like
Likes PeterDonis, topsquark and vanhees71
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top