What Is a Covariance Matrix in Linear Algebra?

Click For Summary
A covariance matrix is a square matrix that contains the covariances between pairs of elements in a dataset. The discussion revolves around proving that the trace of a linear combination of matrices, Tr(αA+βB), equals the linear combination of their traces, αTr(A)+βTr(B). The participants clarify that this property holds for all square matrices, not just covariance matrices. They emphasize that understanding the trace involves recognizing it as the sum of the diagonal elements of the matrix. The conversation suggests focusing on the basic properties of matrices to simplify the proof.
Send BoBs
Messages
23
Reaction score
2
Homework Statement
Prove that Tr(αA+βB) = αTr(A)+βTr(B). α and β are complex constants, and A and B are dXd matrices
Relevant Equations
Tr(αA+βB) = αTr(A)+βTr(B)
First, i'd like to apologize for the vague title. Unfortunately my understanding of the question is equally vague. I think the dXd matrix is meant to be a covariance matrix, so the above equation would be some complex constant multiplied by the covariance matrix. The Tr would referring to the trace of the matrix or sum of diagonal elements. So I'm attempting to show that the "trace of the sum A+B" is equal to "trace A + trace B".

Here's my main problem. I have never heard of a covarience matrix before. If someone could show me a simple example of what a covarience matrix is then I should be able to figure out the additive, multiplicative, etc... rules of these matrices.
 
Physics news on Phys.org
Send BoBs said:
Homework Statement: Prove that Tr(αA+βB) = αTr(A)+βTr(B). α and β are complex constants, and A and B are dXd matrices
Homework Equations: Tr(αA+βB) = αTr(A)+βTr(B)

I think the dXd matrix is meant to be a covariance matrix,
The statement to be proven is true for all square matrices, not just covariance matrices. Try writing a general expression for the trace of a matrix.
 
  • Like
Likes Send BoBs
TeethWhitener said:
The statement to be proven is true for all square matrices, not just covariance matrices. Try writing a general expression for the trace of a matrix.
Thank you. Clearly I'm just getting confused by new terms and not giving this a proper thought. I should probably take some time to get more familiar with the notation used for statistical mechanics.
 

Attachments

  • 20190920_230115[1].jpg
    20190920_230115[1].jpg
    18.4 KB · Views: 252
Send Bob's:Trace is just the sum of diagonal entries. Can you take it from there?
 
This is rather a linear algebra problem not a statistical mechanics one, and I think the proof is 2-3 lines max.
The matrix ##C=\alpha A+\beta B## has as diagonal elements ##c_{ii}=\alpha a_{ii}+\beta b_{ii}## where ##a_{ii},b_{ii}## are the diagonal elements of the matrices A and B respectively.
What is the trace of ##C##, ##Tr(C)## with respect to the diagonal elements ##c_{ii}##? Proceed from here and using simple properties of a finite sum you should be able to prove the result.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
741
Replies
4
Views
4K
  • · Replies 32 ·
2
Replies
32
Views
2K
  • · Replies 5 ·
Replies
5
Views
12K