Stephen Weinberg on Understanding Quantum Mechanics

In summary: Read more »In summary, Weinberg thinks that the only reason to reject MWI is because it makes people feel unsettled. He does not have any technical gripes.
Physics news on Phys.org
  • #2
Wienberg as always cuts through the BS.

Excellent piece - I like his other summary as well from his article Einsteins mistakes:
http://infoproc.blogspot.com.au/2013/02/weinberg-on-quantum-foundations.html
Bohr's version of quantum mechanics was deeply flawed, but not for the reason Einstein thought. The Copenhagen interpretation describes what happens when an observer makes a measurement, but the observer and the act of measurement are themselves treated classically. This is surely wrong: Physicists and their apparatus must be governed by the same quantum mechanical rules that govern everything else in the universe. But these rules are expressed in terms of a wavefunction (or, more precisely, a state vector) that evolves in a perfectly deterministic way. So where do the probabilistic rules of the Copenhagen interpretation come from? Considerable progress has been made in recent years toward the resolution of the problem, which I cannot go into here. It is enough to say that neither Bohr nor Einstein had focused on the real problem with quantum mechanics. The Copenhagen rules clearly work, so they have to be accepted. But this leaves the task of explaining them by applying the deterministic equation for the evolution of the wavefunction, the Schrödinger equation, to observers and their apparatus. The difficulty is not that quantum mechanics is probabilistic—that is something we apparently just have to live with. The real difficulty is that it is also deterministic, or more precisely, that it combines a probabilistic interpretation with deterministic dynamics. ...

We now know a lot more about QM than the founding fathers such as Bohr and Einstein. IMHO about the only early pioneer that got it 'right' was Dirac who basically just stuck with the math rather than delve into philosophy, much of which like Complementary I find vacuous mumbo jumbo - either that or I aren't bright enough to get it - either way it leaves me cold.

I can't let this go without my personal view aired. Its as per Schlosshauer:
https://www.amazon.com/dp/3540357734/?tag=pfamazon01-20

He gives 3 key issues that must be solved. The first 2 are solved, basically, by decoherence. The third is the stickler - technically its how an improper mixed state becomes a proper one or colloquially - why we get any outcomes at all. I simply say - that's how nature is - what a cop out - but hey I can live with it.

Thanks
Bill
 
Last edited by a moderator:
  • Like
Likes illusion707
  • #3
I like that Weinberg associates instrumentalism with the Copenhagen interpretation. There's an all too common attitude among working physicists that interpretations are a matter of taste, and that what truly matters is that the equations give correct predictions. Such a stance is a subtle concession to Copenhagen's anti-realism, as Weinberg correctly points out. After all, let us not forget that David Mermin invented the catchphrase "Shut up and calculate!" as a pithy summary of the Copenhagen interpretation. I'm somewhat dismayed, however, that Weinberg's sole reason for rejecting MWI is that he finds the idea of multiple worlds disturbing--as if one's emotional reaction to a theory should have anything to do with its acceptance or rejection. Hopefully, someone will experimentally test GRW and other objective collapse theories--which is what Weinberg appears to be flirting with--and put that dog to rest
 
Last edited:
  • #4
MrRobotoToo said:
I'm somewhat dismayed, however, that Weinberg's sole reason for rejecting MWI is that he finds the idea of multiple worlds disturbing--as if one's emotional reaction to a theory should have anything to do with its acceptance or rejection. Hopefully, someone will experimentally test GRW and other object collapse theories--which is what Weinberg appears to be flirting with--and put that dog to rest

I am terrible; its my reason as well and scientifically its invalid. But I can't help it.

Thanks
Bill
 
  • Like
Likes phinds
  • #5
bhobba said:
I am terrible; its my reason as well and scientifically its invalid. But I can't help it.

Thanks
Bill
Tsk tsk ;-)
 
  • Like
Likes bhobba
  • #6
MrRobotoToo said:
I'm somewhat dismayed, however, that Weinberg's sole reason for rejecting MWI is that he finds the idea of multiple worlds disturbing--as if one's emotional reaction to a theory should have anything to do with its acceptance or rejection.
Well in a situation such as ours with little evidence to go around, how you decide which interpretation to study is more of a religious question than anything else, and in such a circumstance emotion is as valid as reason.

Of course if observations could be gathered and experiments performed, I would agree with your sentiment.
 
  • #7
bhobba said:
I am terrible; its my reason as well and scientifically its invalid. But I can't help it.

Is that really the only reason? So you think the several attempts at deriving the Born rule either have ironclad assumptions or are at least good enough? And any other technical gripes?

Because I personally find the "feeling" of WMI it's most attractive feature. What I especially like it about it is how it creates subjective uncertainty out of determinism. Since the universe has no outside source of randomness (by definition), creating randomness is a tall order and WMI does it quite elegantly.
 
  • #8
Devin Bayer said:
Since the universe has no outside source of randomness (by definition), creating randomness is a tall order
The universe has no outside source of anything as far as anyone can detect?

It does not even make semantic sense to consider sources outside the universe.

To be clear;

Since the universe has no outside source of universe (by definition), creating universe is a tall order.
 
Last edited:
  • Like
Likes Jamison Lahman and Crass_Oscillator
  • #9
I doubt if everyone here would agree with this extract. I've seen it stated in this Forum that 'decoherence does not decide which outcome happens' ( to paraphrase).
Prof. Weinberg said:
For example, the environment might be the shower of photons in a beam of light that is used to observe the system, as unpredictable in practice as a shower of raindrops. Such an environment causes the superposition of different states in the wave function to break down, leading to an unpredictable result of the measurement. (This is called decoherence.)
 
  • #10
Weinberg expresses his views more mathematically and with more technical prose in his grad-level book "Lectures on Quantum Mechanics". Examples of the prose in the fist edition (2013):

"Page 82: In quantum mechanics the evolution of the state vector described by the time-dependent Schrödinger equation is deterministic. If the time-dependent Schrödinger equation described the measurement process, then whatever the details of the process, the end result would be some definite state, not a number of possibilities with different probabilities.

This is clearly unsatisfactory. If quantum mechanics applies to everything, then it must apply to a physicist’s measurement apparatus, and to physicists themselves. On the other hand, if quantum mechanics does not apply to everything, then we need to know where to draw the boundary of its area of validity. Does it only apply to systems that are not too large? Does it apply if a measurement is made by some automatic apparatus, and no human reads the result?

Page 88: There seems to be a widespread impression that decoherence solves all obstacles to the class of interpretations of quantum mechanics which take seriously the dynamical assumptions of quantum mechanics as applied to everything, including measurement. My own opinion is that these interpretations, like the Copenhagen interpretation, remain unsatisfactory. ...

Statements of this sort about probabilities are predictions about how the state vectors evolve in time during measurements, so if measurement is really described by quantum mechanics, then we ought to be able to derive such formulas by applying the time-dependent Schrodinger equation to the case of repeated measurement. This not just a matter of intellectual tidiness, of wanting to reduce the postulates of physical theory to the minimum number needed. If the Born rule cannot be derived from the time-dependent Schrodinger equation, then something else is needed, something outside the scope of quantum mechanics, and the many worlds interpretation thus shares the inadequacies of the Copenhagen interpretation.16

Page 95: There is nothing absurd or inconsistent about the decoherent histories approach in particular, or about the general idea that the state vector serves only as a predictor of probabilities, not as a complete description of a physical system. Nevertheless, it would be disappointing if we had to give up the “realist” goal of finding complete descriptions of physical systems, and of using this description to derive the Born rule, rather than just assuming it. We can live with the fact that the state of a physical system is given by a vector in Hilbert space rather than by numerical values of the positions and momenta of all the particles in the system, but it is hard to live with no description of physical states at all, only an algorithm for calculating probabilities. My own conclusion (not universally shared) is that today there is no interpretation of quantum mechanics that does not have serious flaws, and that we ought to take seriously the possibility of finding some more satisfactory other theory, to which quantum mechanics is merely a good approximation.

Page 336: There is a troubling weirdness about quantum mechanics. Perhaps its weirdest feature is entanglement, the need to describe even systems that extend over macroscopic distances in ways that are inconsistent with classical ideas.

16 For a strong expression of this view, see A. Kent, Int. J. Mod. Phys A 5, 1745 (1990)."
 
  • Like
Likes Auto-Didact, DrClaude, martinbn and 3 others
  • #11
Crass_Oscillator said:
Well in a situation such as ours with little evidence to go around, how you decide which interpretation to study is more of a religious question than anything else, and in such a circumstance emotion is as valid as reason.

All interpretations are equally valid, scientifically that is. Choice is made purely on 'emotional grounds'

You should study a number of interpretations - they all shed light on the formalism. I think MW is a crock of the proverbial - its totally emotional not scientific, but it didn't stop me from getting David Walllace's book on it and studying it:
https://www.amazon.com/dp/0198707541/?tag=pfamazon01-20

I got a lot out of it and understand what its saying much better. I understand the standard formalism better as well. Did it change my mind? No. In fact it did the opposite - I now think its even more of the proverbial. Why? I now know the modern version is simply Decoherent Histories where instead of one history occurring they all occur at once in different worlds. Its seems an unnecessary added weirdness to me - but hey others view it differently. Its also mathematically and conceptually very beautiful - but so is Decoherent Histories. Why don't I subscribe to Decoherent Histories then? Beautiful it is, but for me its a bit contrived - I like the ignorance ensemble because it IMHO get to the heart of the matter. Its just a slight modification to the ensemble interpretation advocated by Ballentine and Einstein (yes despite what you may have read Einstein believed in QM and even had his own interpretation - he simply thought it incomplete). The slight modification is I only apply it to the outcome of decoherence - in practice there is no difference. Interestingly Ballentine doesn't believe decoherence has anything to do with interpretative issues. What would Einstein think? I believe he will still maintain his view its incomplete and put his finger on the exact issue - why do we get any outcomes at all - but we shall never know for sure.

Thanks
Bill
 
Last edited by a moderator:
  • #12
Devin Bayer said:
Is that really the only reason? So you think the several attempts at deriving the Born rule either have ironclad assumptions or are at least good enough? And any other technical gripes?

The Born rule derivation is valid. It hinges on a key theorem of the approach - the non contextuality theorem which emerges naturally in MW - all other approaches lead to absurdities. That is the key assumption of the Born rule as discovered by Gleason. They also have a decision theory approach - it also valid IMHO but opinions vary.

Its purely an emotional choice.

One thing that needs to be pointed out is MW avoids the why we get outcomes at all issue (technically its how does an improper mixture become a proper one) - Decoherent Histories doesn't. But is the cost worth it - the choice is not rational - just emotional. Same with non contextuality - it is pretty much inevitable in MW - but not Decoherent Histories where its merely natural.

Thanks
Bill
 
Last edited:
  • #13
George Jones said:
Page 88: There seems to be a widespread impression that decoherence solves all obstacles to the class of interpretations of quantum mechanics which take seriously the dynamical assumptions of quantum mechanics as applied to everything, including measurement. My own opinion is that these interpretations, like the Copenhagen interpretation, remain unsatisfactory. ...

Statements of this sort about probabilities are predictions about how the state vectors evolve in time during measurements, so if measurement is really described by quantum mechanics, then we ought to be able to derive such formulas by applying the time-dependent Schrodinger equation to the case of repeated measurement. This not just a matter of intellectual tidiness, of wanting to reduce the postulates of physical theory to the minimum number needed. If the Born rule cannot be derived from the time-dependent Schrodinger equation, then something else is needed, something outside the scope of quantum mechanics, and the many worlds interpretation thus shares the inadequacies of the Copenhagen interpretation.16

Spot on - it doesn't occur so often now but when I first started posting it seemed to occur a lot - people thinking decoherence solves the issues in QM - it doesn't.

George Jones said:
Page 95
George Jones said:
My own conclusion (not universally shared) is that today there is no interpretation of quantum mechanics that does not have serious flaws, and that we ought to take seriously the possibility of finding some more satisfactory other theory, to which quantum mechanics is merely a good approximation.

I agree, but since I now understand the precise issue as espoused by Schlosshauer (how an improper mixture becomes a proper one) it doesn't worry me that much:
https://www.amazon.com/dp/3540357734/?tag=pfamazon01-20

I simply accept it but of course would love to know why. Trouble is its debatable if there even has to be a why. Einstein would certainly think so - but like I say it's debatable and I am used to it. Which side of the debate do I come down on - well I don't think there has to be a why - but that would be a whole new discussion. Certainly Weinberg has but his finger on a key if not the key issue.

Thanks
Bill
 
Last edited by a moderator:
  • #14
Mentz114 said:
I doubt if everyone here would agree with this extract. I've seen it stated in this Forum that 'decoherence does not decide which outcome happens' ( to paraphrase).

Can you elaborate on why you think its an inconsistency?

Technically decoherence converts a superposition to an improper mixed state. Only by assuming its a proper on is this issue solved.

Thanks
Bill
 
  • #15
George Jones said:
My own conclusion (not universally shared) is that today there is no interpretation of quantum mechanics that does not have serious flaws, and that we ought to take seriously the possibility of finding some more satisfactory other theory, to which quantum mechanics is merely a good approximation.

This. QM, like all earlier physical theories, is most likely a provisional theory, which ultimately will be superseded. A non-linear extension of QM seems the most probable direction, given history of physics and the relative novelty of the non-linear perspective.

George Jones said:
Page 336: There is a troubling weirdness about quantum mechanics. Perhaps its weirdest feature is entanglement, the need to describe even systems that extend over macroscopic distances in ways that are inconsistent with classical ideas.

It is interesting to note that others have made this exact same argument. A recent experiment however offers a counterintuitive unification of entanglement and classical chaos:
https://phys.org/news/2016-07-blur-line-classical-quantum-physics.html
 
  • Like
Likes bhobba
  • #16
Auto-Didact said:
This. QM, like all earlier physical theories, is most likely a provisional theory, which ultimately will be superseded. A non-linear extension of QM seems the most probable direction, given history of physics and the relative novelty of the non-linear perspective.

Years ago, Weinberg was a proponent of non-linear generalizations of quantum mechanics (I attended two talks that he gave on this), but then flaws were pointed out. From the same book that I quoted above:

"Page 340 Any attempt to generalize quantum mechanics by allowing small nonlinearities in the evolution of state vectors risks the introduction of instantaneous communication between separated observes.3

3 N. Gisin Helv. Phys. Acta 62 363 (1989); J. Polchinski, Phys. Rev. Lett. 66 397 (1991)."
 
  • Like
Likes bhobba and Auto-Didact
  • #17
I was actually taking 'non-linear extensions' to encompass quite a bit more than merely adding small nonlinearities to the evolution of the state vector, i.e. pretty much any technique of generalisation available from nonlinear dynamical systems theory.
 
  • #18
bhobba said:
But this leaves the task of explaining them by applying the deterministic equation for the evolution of the wavefunction, the Schrödinger equation, to observers and their apparatus.

In solid state physics, already a small bar of metal is treated very successfully as an infinite system. We know that even for simple model systems e.g. an infinite system of spin 1/2 particles, it isn't possible to write down neither a wavefunction nor a Schroedinger equation. Rather, quantities like the average spin per particle or energy density arise as classical observables.
The more illusoric it appears to describe observiers or even the whole universe in terms of a wavefunction. Bohr had understood this.
 
  • Like
Likes bhobba
  • #19
George Jones said:
Years ago, Weinberg was a proponent of non-linear generalizations of quantum mechanics (I attended two talks that he gave on this), but then flaws were pointed out. From the same book that I quoted above:

"Page 340 Any attempt to generalize quantum mechanics by allowing small nonlinearities in the evolution of state vectors risks the introduction of instantaneous communication between separated observes.3

3 N. Gisin Helv. Phys. Acta 62 363 (1989); J. Polchinski, Phys. Rev. Lett. 66 397 (1991)."
There is at least one counterexample, namely non-linear quantum-like theory without instantaneous communication. It is classical mechanics itself:
https://arxiv.org/abs/0707.2319
 
  • #20
bhobba said:
Its purely an emotional choice.

Okay, that's interesting. From what you said above it seems that it gives you a "weird" feeling even if it's "mathematically and conceptually very beautiful".

Personally I have trouble understanding this "weird" feeling in others and I wonder if I'm missing something. Does it have something to do with the multiverse aspect - that there are other "worlds" in this same universe, or other "worlds" at all?

Let's say QM was clearly a single-world theory and decoherence just caused a single outcome to wipe out all the others - a kind of quantum darwinism monopoly. Would that still be weird?
 
  • #21
Devin Bayer said:
Personally I have trouble understanding this "weird" feeling in others and I wonder if I'm missing something.

You are not missing anything - its just we are all different.

The other possibility sounds too contrived for me.

Thanks
Bill
 
  • #22
bhobba said:
Its purely an emotional choice.
It's a philosophical choice. Philosophy is not guided by emotions. It's true that people like one kind of philosophy more than another, but liking (which is an emotion) forms after the philosophical choice has been made. One first concludes, by philosophical arguments, that one philosophy is better than another, and then starts to like the better philosophy.

Moreover, it's not different from science. In science one also first decides, by scientific arguments, which theory is better, and then starts to like this theory. The fact that scientists like good scientific theories does not imply that the choice of the theory is an emotional choice.
 
  • Like
Likes martinbn and bhobba
  • #23
Demystifier said:
It's a philosophical choice.

Much more complete than my reply.

Yes its philosophy, but the liking of a certain all equally rational philosophic positions is emotional.

However pursuing it further than that IMHO would be counter productive since it doesn't really get anywhere.

Thanks
Bill
 
  • #24
bhobba said:
the liking of a certain all equally rational philosophic positions is emotional.
How can you determine that two philosophic (or, for that matter, two scientific) positions are equally rational? Just because both are somewhat rational and somewhat irrational does not imply that they are equally rational.

Sure, to choose better philosophy, or better scientific theory, rationality is not enough. One also needs intuition, gut feeling. But that's not the same thing as emotion.
 
  • #25
bhobba said:
You are not missing anything - its just we are all different.

The other possibility sounds too contrived for me.

But don't you think when you state a judgement like that, you should mention what sounds contrived? You mean the whole thing, with Hilbert spaces and decoherence and interference? Or is there some aspect in particular of WMI that you have trouble with?

I am definitely missing something in your critique.

Additional Edit: It seems to me the article that's the topic of this thread is about how Steven Weinberg finds QM (and especially WMI) weird. So it would be nice to elaborate on what that weirdness is.
 
  • #26
Demystifier said:
How can you determine that two philosophic (or, for that matter, two scientific) positions are equally rational? Just because both are somewhat rational and somewhat irrational does not imply that they are equally rational.

Well I can't find much 'irrational' in the philosophical positions of the interpretations I know - just a little bit eg complementary (to me its mumbo jumbo - so its rationality is hard to decide) - but not much - also I don't think it's central to Copenhagen - just something Bohr used to trot out. There may be philosophical positions in physics like you mention, but I don't know them - then again my knowledge of philosophy is a couple of postgraduate courses I did for the heck of it. So I don't know that much. Sometimes I used to go to the philosophy forums where I got done like a turkey dinner - so maybe philosophical thought doesn't suit me. I certainly find a lot of irrelevant mumbo jumbo in philosophy but mostly its not in physics. My philosophy teacher, I even remember her name, Petra, had two complaints about me. First I was heavily materialistic and I thought I was the opposite because of my emphasis on symmetry as an explanation. She thought, for example, Noethers theorem, which I explained to her, was materialistic - to me its strikingly beautiful and just the opposite. Secondly my arguments used to tangle her up a bit ie they were rather different to what she was used to so I was on a different wavelength for sure.

Thanks
Bill
 
  • #27
Devin Bayer said:
But don't you think when you state a judgement like that, you should mention what sounds contrived?

You deliberately contrived it for the purpose of fleshing out my objection to MW - its not an actual interpretation. As far as being an actual interpretation its pretty much the same as decoherent histories. I like DH but its not my preferred interpretation because its based on the contrived idea of history - I just feel the true explanation does't require that. Notice the word - feel. Its not scientific.

My disliking for MW is an emotional reaction to this exponentially increasing number of worlds just like some react to the color red. Stop reading any more into it - its not scientific - I have already admitted that.

Thanks
Bill
 
  • #28
bhobba said:
You deliberately contrived it for the purpose of fleshing out my objection to MW - its not an actual interpretation.

Those are both true, though I didn't know what you were going to say. Maybe you were going to say you didn't like the "Maverick" branches, in which case a compromise between my contrived monopoly example and the standard WMI may be more realistic. We accept that some branches are destroyed by interference - if that effect were stronger, it could eliminate most of the new worlds.
My disliking for MW is an emotional reaction to this exponentially increasing number of worlds just like some react to the color red. Stop reading any more into it - its not scientific - I have already admitted that.

But if emotion is how scientific theories are judged then it's relevant to address. Some people claim theories don't need to be good explanations (like instrumentalists), but if they are emotionally unsatisfactory and hence not accepted, it could impede the progress of science.
 
  • #29
Devin Bayer said:
But if emotion is how scientific theories are judged then it's relevant to address.

Why?

Some, including me say at rock bottom physics is simple. But what is simple varies from person to person. I don't find exponentially increasing worlds simple - others don't care. Its an individual reaction - its not scientific - it doesn't feel right - feel, simple, emotion etc - hard for me at least to disentangle them. Philosophers may do it but like I say I find a lot of it mumbo jumbo and most certainly such a discussion is philosophy pure and simple and not suitable for discussion here.

Why did Einstein not like the Copenhagen interpretation (I don't either - but for different reasons to Einstein). He had an intuition about how the world operated and it went against that - intuition, feeling, emotion - basically they are used all over the place and its hard to disentangle things that can't be decided experimentally from such.

Thanks
Bill
 
Last edited:
  • #30
bhobba said:
Why?

You seem to think it's a personal choice which physical theory to accept, but I disagree. I see articles like this thread topic and I see a Troube with Quantum Mechanics – that our theories are so hard to accept due to human emotion that physicists write articles like this. Trying to pretend people are rational robots isn't going to solve that problem.

I don't really want a philosophical discussion either, but it seems you need at least a little philosophy of science to say how theories should be pitted against each other and what constitutes physics. If emotion is not a valid criteria and WMI is technically the best theory, discounting all emotion, then Steven Weinberg's "trouble" doesn't exist.

I don't think the philosophy of "only experimental predictions matter" is also free of issues. Should we really take seriously the theory of Newtonian Mechanics + "flying ponies which affect nothing"? Surely there are other criteria for judging theories, like non-arbitrariness and minimising the number of assumptions.
 
  • #31
DrDu said:
In solid state physics, already a small bar of metal is treated very successfully as an infinite system. We know that even for simple model systems e.g. an infinite system of spin 1/2 particles, it isn't possible to write down neither a wavefunction nor a Schroedinger equation.

Do you mean that such a system doesn't have a wave function, or that the wave function is too complex to reason about?
 
  • #32
Devin Bayer said:
You seem to think it's a personal choice which physical theory to accept, but I disagree.

Ok - we disagree.

Thanks
Bill
 
  • Like
Likes akvadrako
  • #33
Demystifier said:
There is at least one counterexample, namely non-linear quantum-like theory without instantaneous communication. It is classical mechanics itself:
https://arxiv.org/abs/0707.2319

Good point. But Weinberg may have meant that adding nonlinearity to the rest of the rules for quantum mechanics (in particular, that measuring a quantity yields an eigenvalue with a probability given by the Born rule) produces FTL effects. Your rewriting of classical mechanics as nonlinear quantum mechanics doesn't preserve this rule. That would probably be okay if the rule were preserved as an approximation, but for classical mechanics, it's not even approximately true (I don't think).
 
  • #34
stevendaryl said:
Your rewriting of classical mechanics as nonlinear quantum mechanics doesn't preserve this rule.
My rewriting of classical mechanics as nonlinear QM does preserve the Born rule.
 
  • #35
Demystifier said:
My rewriting classical mechanics as nonlinear QM does preserve the Born rule.

Really? That a measurement of angular momentum must yield a multiple of [itex]\hbar[/itex]? But that's not a prediction of classical physics.
 
Back
Top