Stimulated emission in harmonic oscillator

Click For Summary
SUMMARY

Stimulated emission is indeed possible in a harmonic oscillator (HO), allowing for the emission of two quanta of light when one is introduced, similar to two-level systems like atoms. This phenomenon is closely related to cyclotron emission, where electrons transition between Landau levels and emit photons at the cyclotron frequency, leading to self-amplifying stimulated emission known as electromagnetic cyclotron instability. The discussion highlights that stimulated emission has classical analogs, as explained by Einstein, and emphasizes the importance of anharmonicity for observing Rabi oscillations, which are not present in ideal harmonic oscillators.

PREREQUISITES
  • Understanding of stimulated emission and its classical analogs
  • Familiarity with harmonic oscillators in quantum mechanics
  • Knowledge of cyclotron emission and Landau levels
  • Concept of Rabi oscillations in two-level systems
NEXT STEPS
  • Research electromagnetic cyclotron instability in plasma physics
  • Study anharmonicity in quantum harmonic oscillators
  • Explore Rabi oscillations and their implications in quantum mechanics
  • Investigate the differences between ideal and real-world harmonic oscillators
USEFUL FOR

Physicists, quantum mechanics students, and researchers in plasma physics or quantum optics seeking to deepen their understanding of stimulated emission and its applications in harmonic oscillators.

kelly0303
Messages
573
Reaction score
33
Hello! Is stimulated emission possible for a harmonic oscillator (HO) i.e. you send a quanta of light at the right energy, and you end up with 2 quantas and the HO one energy level lower (as you would have in a 2 level system, like an atom)?
 
Physics news on Phys.org
Yes, of course. Cyclotron emission (from electrons spiralling in a magnetic field) is very much like that. Electrons jump from one Landau level to the next and emit photons of the cyclotron frequency with each step. And this can be self-amplifying due to stimulated emission. It is called electromagnetic cyclotron instability and is well known in plasma physics. It happens when the electron velocity distribution becomes unstable, i.e. there is a "population inversion" and in a region of velocity space faster electrons are more numerous than slow ones.

It is wrong to think of stimulated emission as a quantum effect. Already Einstein explained that it has a classical analog. An oscillating charge in an electromagnetic wave can gain energy or lose energy (giving it to the wave) depending on the phase relation between the oscillator and the wave.
 
  • Like
Likes   Reactions: vanhees71
WernerQH said:
Yes, of course. Cyclotron emission (from electrons spiralling in a magnetic field) is very much like that. Electrons jump from one Landau level to the next and emit photons of the cyclotron frequency with each step. And this can be self-amplifying due to stimulated emission. It is called electromagnetic cyclotron instability and is well known in plasma physics. It happens when the electron velocity distribution becomes unstable, i.e. there is a "population inversion" and in a region of velocity space faster electrons are more numerous than slow ones.

It is wrong to think of stimulated emission as a quantum effect. Already Einstein explained that it has a classical analog. An oscillating charge in an electromagnetic wave can gain energy or lose energy (giving it to the wave) depending on the phase relation between the oscillator and the wave.
Thanks a lot for your reply. I got a bit confused as in my QM book, they presented HO as if when you add more quanta you go higher and higher in energy. But it seems like you will end up having Rabi oscillations between 2 levels (ignoring the lifetime of excited states). I haven't really seen any mention of Rabi oscillations in the context of the HO.
 
kelly0303 said:
Thanks a lot for your reply. I got a bit confused as in my QM book, they presented HO as if when you add more quanta you go higher and higher in energy. But it seems like you will end up having Rabi oscillations between 2 levels (ignoring the lifetime of excited states). I haven't really seen any mention of Rabi oscillations in the context of the HO.

I think there might be difference between theory and experiment here. A perfect HO where the levels are exactly equidistant won't exhibit Rabi oscillations since the system will just continue to climb up the "ladder" as it absorbs more photons. To get oscillations you need some form of anhamonicity so that the energy difference between the states differ.
Now, I don't know much about cyclotron physics; but I suspect the there is some anharmonicity between the different Landau levels; if not you could just keep "pumping" the system to higher and higher levels forever.

Note that the dynamics will also be different for a multi-level system where the lifetime of the levels differ
 
kelly0303 said:
in my QM book, they presented HO as if when you add more quanta you go higher and higher in energy. But it seems like you will end up having Rabi oscillations between 2 levels (ignoring the lifetime of excited states). I haven't really seen any mention of Rabi oscillations in the context of the HO.
It is correct that in a harmonic oscillator you can go up to higher and higher energies. Rabi oscillations are specific to two-level systems.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
13K