- #1
indigojoker
- 246
- 0
Use Stirling's formula, n!=sqrt(2 pi n) n^n e^{-n}, to estimate the probability that all 50 states are represneted in a group of 50 councilmen chosen at random.
I think it should be:
[tex]P=\frac{50!}{50^{50}} [/tex]
So using Stirling's formula, we get:
[tex]P=\frac{\sqrt{2 \pi 50} 50^{50} e^{-50}}{50^{50}}[/tex]
[tex]P=\sqrt{2 \pi 50} e^{-50}[/tex]
is this the correct approach?
I think it should be:
[tex]P=\frac{50!}{50^{50}} [/tex]
So using Stirling's formula, we get:
[tex]P=\frac{\sqrt{2 \pi 50} 50^{50} e^{-50}}{50^{50}}[/tex]
[tex]P=\sqrt{2 \pi 50} e^{-50}[/tex]
is this the correct approach?