TFM
- 1,016
- 0
Homework Statement
Faraday’s Law can be written as:
\oint_P \vec{E} \cdot \vec{dl} = -\frac{d}{dt}\Phi
Where \Phi is the magnetic flux. Use Stokes’ theorem to obtain the equvilant Maxwell equation (i.e. Faraday’s Law in differential form).
Homework Equations
Stokes' Law:
\int_{\partial s}F \cdot ds = \int_P (\nabla \times F) \cdot da
The Attempt at a Solution
So far, I have:
\int_{\partial s}F \cdot ds = \int_S (\nabla \times F) \cdot da
\int_{P}E \cdot dl = \int_S (\nabla \times E) \cdot da = \frac{d}{dt}\Phi
Does this look like I'm doing it right?
TFM