Stokes' theorem and surface integrals

Click For Summary

Discussion Overview

The discussion revolves around the computation of the integral of the "curl" of a vector field over a 2-dimensional surface, utilizing Stokes' theorem and surface integrals. Participants explore the mathematical formulation involving antisymmetric tensors and the implications of parametrizing the surface.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant introduces the antisymmetric 2nd rank tensor ##\Omega_{ij}## and attempts to compute the surface integral using a specific parametrization.
  • Another participant suggests that the distributions in the integral may be incorrect and questions the validity of the final expression.
  • A correction is made regarding the swapping of variables ##u## and ##v## in the integral.
  • A later reply indicates that the integral setup may count the same surface twice, leading to an overestimation of the result.
  • One participant acknowledges the confusion regarding differential forms and their role in defining the correct surface element.

Areas of Agreement / Disagreement

Participants express differing views on the correctness of the integral setup and the final expression, indicating that the discussion remains unresolved regarding the proper formulation and interpretation of the integral.

Contextual Notes

There are unresolved mathematical steps related to the symmetry of the integrand and the implications of counting terms in the integral. The discussion also highlights the dependence on definitions related to differential forms.

dRic2
Gold Member
Messages
887
Reaction score
225
TL;DR
Compute the integral of the "curl" of the vector field ##A_i(x_i)## over a 2-dimensional surface.
Hi,

So my goal is to compute the integral of the "curl" of the vector field ##A_i(x_i)## over a 2-dimensional surface. Following a physics book that I am reading, I introduce the antisymmetric 2-nd rank tensor ##\Omega_{ij}##, defined as:
$$\Omega_{ij} = \frac {\partial A_i}{\partial x_j} - \frac {\partial A_j}{\partial x_i}$$
then, from what I gather reading the Wikipedia page (https://en.wikipedia.org/wiki/Surface_integral), if the surface can be parametrized by a set of 2 variables ##u## and ##v## I should be able to write the surface element as ##dudv## times the determinant of the jacobian:
$$ \frac {\partial x_i}{\partial u} \frac {\partial x_j}{\partial v} - \frac {\partial x_j}{\partial u} \frac {\partial x_i}{\partial v}$$
Putting all together I get:
$$\int_S \left( \frac {\partial A_i}{\partial x_j} - \frac {\partial A_j}{\partial x_i} \right) \left( \frac {\partial x_i}{\partial u} \frac {\partial x_j}{\partial v} - \frac {\partial x_j}{\partial u} \frac {\partial x_i}{\partial v} \right) dudv$$
Using the chain rule, I can simplfy the expression to yield:
$$ \int_S \left( \frac {\partial A_i}{\partial v} \frac {\partial x_i}{\partial u} - \frac {\partial x_i}{\partial v} \frac {\partial A_i}{\partial u} - \frac {\partial A_j}{\partial u} \frac {\partial x_j}{\partial v} + \frac {\partial x_j}{\partial u} \frac {\partial A_j}{\partial v} \right) dudv = 2 \int_S \left( \frac {\partial A_i}{\partial v} \frac {\partial x_i}{\partial u} - \frac {\partial x_i}{\partial v} \frac {\partial A_i}{\partial u} \right) dudv
$$
But I am pretty sure there should not be a 2 in the last equation. Is my reasoning wrong?

Thanks
Ric
 
Last edited:
Physics news on Phys.org
I think you should check your distributions from the second-to-last line. From what I got, the terms on the last line should all be distinct.

This is assuming that your reasoning is correct, though. Algebraically, your final answer does not look right.
 
Last edited:
In the last line ##u## and ##v## were swapped. I corrected the OP for clarity.
 
dRic2 said:
Summary:: Compute the integral of the "curl" of the vector field ##A_i(x_i)## over a 2-dimensional surface.

Hi,

So my goal is to compute the integral of the "curl" of the vector field ##A_i(x_i)## over a 2-dimensional surface. Following a physics book that I am reading, I introduce the antisymmetric 2-nd rank tensor ##\Omega_{ij}##, defined as:
$$\Omega_{ij} = \frac {\partial A_i}{\partial x_j} - \frac {\partial A_j}{\partial x_i}$$
then, from what I gather reading the Wikipedia page (https://en.wikipedia.org/wiki/Surface_integral), if the surface can be parametrized by a set of 2 variables ##u## and ##v## I should be able to write the surface element as ##dudv## times the determinant of the jacobian:
$$ \frac {\partial x_i}{\partial u} \frac {\partial x_j}{\partial v} - \frac {\partial x_j}{\partial u} \frac {\partial x_i}{\partial v}$$
Putting all together I get:
$$\int_S \left( \frac {\partial A_i}{\partial x_j} - \frac {\partial A_j}{\partial x_i} \right) \left( \frac {\partial x_i}{\partial u} \frac {\partial x_j}{\partial v} - \frac {\partial x_j}{\partial u} \frac {\partial x_i}{\partial v} \right) dudv$$
Using the chain rule, I can simplfy the expression to yield:
$$ \int_S \left( \frac {\partial A_i}{\partial v} \frac {\partial x_i}{\partial u} - \frac {\partial x_i}{\partial v} \frac {\partial A_i}{\partial u} - \frac {\partial A_j}{\partial u} \frac {\partial x_j}{\partial v} + \frac {\partial x_j}{\partial u} \frac {\partial A_j}{\partial v} \right) dudv = 2 \int_S \left( \frac {\partial A_i}{\partial v} \frac {\partial x_i}{\partial u} - \frac {\partial x_i}{\partial v} \frac {\partial A_i}{\partial u} \right) dudv
$$
But I am pretty sure there should not be a 2 in the last equation. Is my reasoning wrong?

Thanks
Ric

There are n(n-1) possible off-diagonal values of (i,j). The way you have set your integral up, you only need the \frac12 n(n-1) terms where i < j. After changing variables to u and v your integrand is symmetric in i and j; hence your answer is twice as large as it should be.
 
  • Like
Likes   Reactions: jim mcnamara and dRic2
Oh I see. Since ##dx_i \wedge dx_j = - dx_j \wedge dx_i## I was counting the same surface twice!

Even though I don't know differential geometry at all, I read on Wikipedia (https://en.wikipedia.org/wiki/Differential_form) that the "differential 2-form" (whatever that is...) is defined for i<j in order to give the correct surface element. I didn't understand most of the article but it seems to me that it says the same thing that you said. Thanks!
 
dRic2 said:
Oh I see. Since ##dx_i \wedge dx_j = - dx_j \wedge dx_i## I was counting the same surface twice!

Even though I don't know differential geometry at all, I read on Wikipedia (https://en.wikipedia.org/wiki/Differential_form) that the "differential 2-form" (whatever that is...) is defined for i<j in order to give the correct surface element. I didn't understand most of the article but it seems to me that it says the same thing that you said. Thanks!

Note that <br /> \int \partial_jA_i\,dx_i \wedge dx_j = \int (\partial_2A_1-\partial_1A_2)\,dx_1 \wedge dx_2 <br /> + \int (\partial_3A_2-\partial_2A_3)\,dx_2 \wedge dx_3 <br /> + \int (\partial_3A_1-\partial_1A_3)\,dx_1 \wedge dx_3
 
  • Like
Likes   Reactions: dRic2

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K