Stopping a Bullet: Calculate umin and xf

Click For Summary
SUMMARY

The discussion focuses on calculating the minimum speed of a bullet, denoted as u_{min}, and the horizontal distance x_f where a block falls after being struck by the bullet. The formulas derived are u_{min} = (1 + \frac{m_2}{m_1})\sqrt{2\mu_k g d} and x_f = \sqrt{\frac{2h}{g}\left(\left(\frac{m_1}{m_1+m_2}u\right)^2 - 2\mu_k g d\right)}. These equations utilize principles from conservation of momentum and Newton's second law, specifically addressing the effects of kinetic friction and gravitational forces on the block's motion.

PREREQUISITES
  • Understanding of conservation of momentum in collisions
  • Familiarity with Newton's second law of motion
  • Knowledge of kinematic equations for projectile motion
  • Concept of kinetic friction and its effects on motion
NEXT STEPS
  • Study the derivation of conservation of momentum in elastic and inelastic collisions
  • Learn about the effects of kinetic friction on motion and energy loss
  • Explore kinematic equations in detail, particularly for projectile motion
  • Investigate the role of gravitational acceleration in free fall scenarios
USEFUL FOR

Physics students, educators, and anyone interested in mechanics, particularly those studying collisions and motion under the influence of friction and gravity.

ThEmptyTree
Messages
55
Reaction score
15
Homework Statement
A bullet of mass ##m_1## traveling horizontally with speed ##u## hits a block of mass ##m_2## that is originally at rest and becomes embedded in the block. After the collision, the block slides horizontally a distance ##d## on a surface with friction, and then falls off the surface at a height ##h## as shown. The coefficient of kinetic friction between the block and the surface is ##\mu_k##. Assume the collision is nearly instantaneous and all distances are large compared to the size of the block. Neglect air resistance.

(a) What is ##u_{min}##, the minimum speed of the bullet so that the block falls off the surface? Express your answer in terms of some or all of the following: ##m_1, m_2, \mu_k, d, h## and ##g## for the gravitational constant.

(b) Assume that the initial speed of the bullet ##u## is large enough for the block to fall off the surface. Calculate ##x_f## , the position where the block hits the ground measured from the bottom edge of the surface. Express your answer in terms of some or all of the following: ##m_1, m_2, \mu_k, u, d, h## and ##g##.
Relevant Equations
Newton's 2nd Law : $$\overrightarrow{F}=m\overrightarrow{a}$$
Conservation of momentum for instantaneous collision: $$\overrightarrow{p_1}=\overrightarrow{p_2}$$
Untitled.png


(a) ##u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}##

(b) ##x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}##

Can someone check please?
 
Last edited:
Physics news on Phys.org
ThEmptyTree said:
Homework Statement:: A bullet of mass ##m_1## traveling horizontally with speed u hits a block of mass ##m_2## that is originally at rest and becomes embedded in the block. After the collision, the block slides horizontally a distance ##d## on a surface with friction, and then falls off the surface at a height ##h## as shown. The coefficient of kinetic friction between the block and the surface is ##\mu_k##. Assume the collision is nearly instantaneous and all distances are large compared to the size of the block. Neglect air resistance.

(a) What is ##u_{min}##, the minimum speed of the bullet so that the block falls off the surface? Express your answer in terms of some or all of the following: ##m_1, m_2, \mu_k, d, h## and ##g## for the gravitational constant.

(b) Assume that the initial speed of the bullet ##u## is large enough for the block to fall off the surface. Calculate ##x_f## , the position where the block hits the ground measured from the bottom edge of the surface. Express your answer in terms of some or all of the following: ##m_1, m_2, \mu_k, u, d, h## and ##g##.
Relevant Equations:: Newton's 2nd Law : $$\overrightarrow{F}=m\overrightarrow{a}$$
Conservation of momentum for instantaneous collision: $$\overrightarrow{p_1}=\overrightarrow{p_2}$$

View attachment 288337

(a) ##u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}##

(b) ##x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}##

Can someone check please?
Explain how you arrived at those answers.

Please, show your work.
 
  • Like
Likes   Reactions: Chestermiller
ThEmptyTree said:
(a) ##u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}##

(b) ##x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}##

Can someone check please?
Looks right.
 
  • Like
Likes   Reactions: PeroK
@haruspex Thanks for checking.

This is a sketch of what I've done:

(a)
##t=t_1:\text{right before the collision}##
$$\overrightarrow{p_1}=m_1\overrightarrow{u}$$
##t=t_2:\text{right after the collision}##
$$\overrightarrow{p_2}=(m_1+m_2)\overrightarrow{v_2}$$
Conservation of momentum to find ##v_2##:
$$\overrightarrow{p_1}=\overrightarrow{p_2}\Rightarrow v_2=\frac{m_1}{m_1+m_2}u$$
Newton's 2nd law to find acceleration:
$$\overrightarrow{F}=m\overrightarrow{a}\Rightarrow a=-\mu_k g$$
Considering the case when the block stops on the edge:
$$v^2=v_0^2+2a(x-x_0)\Rightarrow 0=v_2^2+2ad\Rightarrow u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}$$

(b)
Applying the same logic to find horizontal component of falling speed and so ##x## as a function of ##t##:
$$v_x=\sqrt{\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d},~x=v_x t$$
Using kinematics to find ##y## as a function of ##t##:
$$y=h-\frac{1}{2}gt^2$$
Eliminating ##t## from both equations:
$$y=h-\frac{g}{2v_x^2}x^2$$
At ##y=0\Rightarrow x=x_f~:##
$$x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}$$
 
  • Like
Likes   Reactions: PeroK

Similar threads

  • · Replies 18 ·
Replies
18
Views
2K
Replies
3
Views
1K
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
21
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 19 ·
Replies
19
Views
5K