Stopping a Bullet: Calculate umin and xf

AI Thread Summary
The discussion focuses on calculating the minimum speed of a bullet, ##u_{min}##, required for a block to fall off a surface after a collision, and the distance ##x_f## where the block lands. The equations derived are ##u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}## for the minimum speed and ##x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}## for the landing position. The calculations utilize conservation of momentum and Newton's second law to derive the necessary expressions. The results were confirmed by another participant in the discussion. The thread emphasizes the application of physics principles to solve the problem effectively.
ThEmptyTree
Messages
55
Reaction score
15
Homework Statement
A bullet of mass ##m_1## traveling horizontally with speed ##u## hits a block of mass ##m_2## that is originally at rest and becomes embedded in the block. After the collision, the block slides horizontally a distance ##d## on a surface with friction, and then falls off the surface at a height ##h## as shown. The coefficient of kinetic friction between the block and the surface is ##\mu_k##. Assume the collision is nearly instantaneous and all distances are large compared to the size of the block. Neglect air resistance.

(a) What is ##u_{min}##, the minimum speed of the bullet so that the block falls off the surface? Express your answer in terms of some or all of the following: ##m_1, m_2, \mu_k, d, h## and ##g## for the gravitational constant.

(b) Assume that the initial speed of the bullet ##u## is large enough for the block to fall off the surface. Calculate ##x_f## , the position where the block hits the ground measured from the bottom edge of the surface. Express your answer in terms of some or all of the following: ##m_1, m_2, \mu_k, u, d, h## and ##g##.
Relevant Equations
Newton's 2nd Law : $$\overrightarrow{F}=m\overrightarrow{a}$$
Conservation of momentum for instantaneous collision: $$\overrightarrow{p_1}=\overrightarrow{p_2}$$
Untitled.png


(a) ##u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}##

(b) ##x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}##

Can someone check please?
 
Last edited:
Physics news on Phys.org
ThEmptyTree said:
Homework Statement:: A bullet of mass ##m_1## traveling horizontally with speed u hits a block of mass ##m_2## that is originally at rest and becomes embedded in the block. After the collision, the block slides horizontally a distance ##d## on a surface with friction, and then falls off the surface at a height ##h## as shown. The coefficient of kinetic friction between the block and the surface is ##\mu_k##. Assume the collision is nearly instantaneous and all distances are large compared to the size of the block. Neglect air resistance.

(a) What is ##u_{min}##, the minimum speed of the bullet so that the block falls off the surface? Express your answer in terms of some or all of the following: ##m_1, m_2, \mu_k, d, h## and ##g## for the gravitational constant.

(b) Assume that the initial speed of the bullet ##u## is large enough for the block to fall off the surface. Calculate ##x_f## , the position where the block hits the ground measured from the bottom edge of the surface. Express your answer in terms of some or all of the following: ##m_1, m_2, \mu_k, u, d, h## and ##g##.
Relevant Equations:: Newton's 2nd Law : $$\overrightarrow{F}=m\overrightarrow{a}$$
Conservation of momentum for instantaneous collision: $$\overrightarrow{p_1}=\overrightarrow{p_2}$$

View attachment 288337

(a) ##u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}##

(b) ##x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}##

Can someone check please?
Explain how you arrived at those answers.

Please, show your work.
 
  • Like
Likes Chestermiller
ThEmptyTree said:
(a) ##u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}##

(b) ##x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}##

Can someone check please?
Looks right.
 
@haruspex Thanks for checking.

This is a sketch of what I've done:

(a)
##t=t_1:\text{right before the collision}##
$$\overrightarrow{p_1}=m_1\overrightarrow{u}$$
##t=t_2:\text{right after the collision}##
$$\overrightarrow{p_2}=(m_1+m_2)\overrightarrow{v_2}$$
Conservation of momentum to find ##v_2##:
$$\overrightarrow{p_1}=\overrightarrow{p_2}\Rightarrow v_2=\frac{m_1}{m_1+m_2}u$$
Newton's 2nd law to find acceleration:
$$\overrightarrow{F}=m\overrightarrow{a}\Rightarrow a=-\mu_k g$$
Considering the case when the block stops on the edge:
$$v^2=v_0^2+2a(x-x_0)\Rightarrow 0=v_2^2+2ad\Rightarrow u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}$$

(b)
Applying the same logic to find horizontal component of falling speed and so ##x## as a function of ##t##:
$$v_x=\sqrt{\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d},~x=v_x t$$
Using kinematics to find ##y## as a function of ##t##:
$$y=h-\frac{1}{2}gt^2$$
Eliminating ##t## from both equations:
$$y=h-\frac{g}{2v_x^2}x^2$$
At ##y=0\Rightarrow x=x_f~:##
$$x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}$$
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top