(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Show that if you add a total derivative to the Lagrangian density ##L \to L + \partial_\mu X^\mu##, the energy momentum tensor changes as ##T^{\mu\nu} \to T^{\mu\nu}+\partial_\alpha B^{\alpha\mu\nu}## with ##B^{\alpha\mu\nu}=-B^{\mu\alpha\nu}##.

2. Relevant equations

3. The attempt at a solution

So we have ##T_{\mu\nu}=\frac{\partial L}{\partial(\partial_\mu \phi)}\partial_\nu \phi-g_{\mu\nu}L##, where ##\phi## is the field that the Lagrangian depends on. If we do the given change on the Lagrangian, the change in ##T_{\mu\nu}## would be ##\frac{\partial (\partial_\alpha X^\alpha)}{\partial(\partial_\mu \phi)}\partial_\nu \phi-g_{\mu\nu}\partial_\alpha X^\alpha =\partial_\alpha \frac{\partial X^\alpha}{\partial(\partial_\mu \phi)}\partial_\nu \phi-g_{\mu\nu}\partial_\alpha X^\alpha##. From here I thought of using this: ##g_{\mu\nu}\partial_\alpha X^\alpha=g_{\mu\nu}\partial_\alpha \phi \frac{\partial X^\alpha}{\partial \phi}## But I don't really know what to do from here. Mainly I don't know how to get rid of that ##g_{\mu\nu}##. Can someone help me?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Stress energy tensor transformation

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**