- #1
- 489
- 0
Hey guys,
I'm having a massive brain freeze here trying to show that for any element g in the unitary group you can always represent it as s*some diagonal matrix*s^-1. The only requirement for an element to be unitary is that its hermitian conjugate is its inverse correct? Any hints/help would be appreciated!
Cheers
-G
I'm having a massive brain freeze here trying to show that for any element g in the unitary group you can always represent it as s*some diagonal matrix*s^-1. The only requirement for an element to be unitary is that its hermitian conjugate is its inverse correct? Any hints/help would be appreciated!
Cheers
-G
Last edited: