MHB Sum of Numbers on Cube Faces to Equal 2004

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cube Numbers
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Positive integers are written on all the faces of a cube, one on each. At each corner (vertex) of the cube, the product of the numbers on the faces that meet at the corner is written. The sum of the numbers written at all the corners is 2004. If $T$ denotes the sum of the numbers on all the faces, find all the possible values of $T$.
 
Mathematics news on Phys.org
\begin{tikzpicture}[
face/.pic = {
\node {#1};
\draw (-1,-1) rectangle (1, 1);
},
cube/.pic = {
\draw (0,0) pic {face=a};
\draw (1,-1) -- (2,-0.5) -- (2,1.5) -- (1,1) node at (1.5,0.25) {b};
\draw (2,1.5) -- (0,1.5) -- (-1,1) node at (0.5,1.25) {e};
}]
\draw (0,0) pic {face=a} (2,0) pic {face=b} (4,0) pic {face=c} (6,0) pic {face=d} (0,2) pic {face=e} (0,-2) pic {face=f};
\draw (9,0) pic {cube};
\end{tikzpicture}
Let $a,b,c,d,e,f$ be the 6 faces where $(a,c)$, $(b,d)$, and $(e,f)$ are the pairs of opposing faces as shown in the drawing.
The sum of the corners is $(ab+bc+cd+da)e+(ab+bc+cd+da)f=(a(b+d) + c(b+d))(e+f) =(a+c)(b+d)(e+f)=2004$.

The list of suitable factorizations of $2004=2^2\cdot 3\cdot 167$ is $(3\cdot 4\cdot 167,\, 2\cdot 6\cdot 167,\,2\cdot 3\cdot 334,\,2\cdot 2\cdot 501)$.
We are looking for the possibilities for $T=a+b+c+d+e+f$, which is the sum of the 3 factors.
Those possibilities for $T$ are $174,\, 175,\, 339,\, 505$.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top