MHB Sum or difference formula (sin, cos, and tan)

AI Thread Summary
To find the sine, cosine, and tangent of the angle ${-13\pi}/{12}$, the first step is to add $2\pi$, resulting in $\frac{11}{12}\pi$. This angle can be expressed as a sum of known angles, such as $\frac{3\pi}{4} + \frac{\pi}{6}$ or $\frac{1}{2}\pi + \frac{1}{4}\pi + \frac{1}{6}\pi. By using the angle-sum formulas, the exact values for sine, cosine, and tangent can be calculated. The discussion emphasizes the importance of expressing angles in a manageable form before applying trigonometric identities. Understanding these formulas simplifies the process of finding trigonometric values for complex angles.
Taryn1
Messages
25
Reaction score
0
So I'm supposed to find the exact values of the sine, cosine, and tangent of an angle by using a sum or difference formula ( i.e. sin(x+y)=sin(x)cos(y)+cos(x)sin(y) ), but this is the angle I was given: ${-13\pi}/{12}$. How do I use a sum or difference formula to get the sin, cos, and tan of that?
 
Last edited:
Mathematics news on Phys.org
I would first add $2\pi$ to get:

$$-\frac{13}{12}\pi+2\pi=\frac{11}{12}\pi$$

And then write:

$$\frac{11}{12}\pi=\frac{1}{2}\pi+\frac{1}{4}\pi+\frac{1}{6}\pi$$

Now you can use the angle-sum formulas. :)
 
MarkFL said:
I would first add $2\pi$ to get:

$$-\frac{13}{12}\pi+2\pi=\frac{11}{12}\pi$$

And then write:

$$\frac{11}{12}\pi=\frac{1}{2}\pi+\frac{1}{4}\pi+\frac{1}{6}\pi$$

Now you can use the angle-sum formulas. :)

Or even just $\displaystyle \begin{align*} \frac{3\pi}{4} + \frac{\pi}{6} \end{align*}$ or $\displaystyle \begin{align*} \frac{\pi}{4} + \frac{2\pi}{3} \end{align*}$ to avoid multiple uses of the compound angle formulae...
 
Thanks for your help! That makes more sense now.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top