MHB Sum or difference formula (sin, cos, and tan)

Click For Summary
To find the sine, cosine, and tangent of the angle ${-13\pi}/{12}$, the first step is to add $2\pi$, resulting in $\frac{11}{12}\pi$. This angle can be expressed as a sum of known angles, such as $\frac{3\pi}{4} + \frac{\pi}{6}$ or $\frac{1}{2}\pi + \frac{1}{4}\pi + \frac{1}{6}\pi. By using the angle-sum formulas, the exact values for sine, cosine, and tangent can be calculated. The discussion emphasizes the importance of expressing angles in a manageable form before applying trigonometric identities. Understanding these formulas simplifies the process of finding trigonometric values for complex angles.
Taryn1
Messages
25
Reaction score
0
So I'm supposed to find the exact values of the sine, cosine, and tangent of an angle by using a sum or difference formula ( i.e. sin(x+y)=sin(x)cos(y)+cos(x)sin(y) ), but this is the angle I was given: ${-13\pi}/{12}$. How do I use a sum or difference formula to get the sin, cos, and tan of that?
 
Last edited:
Mathematics news on Phys.org
I would first add $2\pi$ to get:

$$-\frac{13}{12}\pi+2\pi=\frac{11}{12}\pi$$

And then write:

$$\frac{11}{12}\pi=\frac{1}{2}\pi+\frac{1}{4}\pi+\frac{1}{6}\pi$$

Now you can use the angle-sum formulas. :)
 
MarkFL said:
I would first add $2\pi$ to get:

$$-\frac{13}{12}\pi+2\pi=\frac{11}{12}\pi$$

And then write:

$$\frac{11}{12}\pi=\frac{1}{2}\pi+\frac{1}{4}\pi+\frac{1}{6}\pi$$

Now you can use the angle-sum formulas. :)

Or even just $\displaystyle \begin{align*} \frac{3\pi}{4} + \frac{\pi}{6} \end{align*}$ or $\displaystyle \begin{align*} \frac{\pi}{4} + \frac{2\pi}{3} \end{align*}$ to avoid multiple uses of the compound angle formulae...
 
Thanks for your help! That makes more sense now.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K