Graduate Summation formula from statistical mechanics

Click For Summary
The discussion centers on a summation formula relevant to the 1-dimensional Ising spin chain in statistical mechanics. The formula involves a sum that can be checked for small values of N but is challenging to prove by induction compared to other simpler sums. Participants suggest using the binomial theorem for proof, leading to a known formula for binomial expansions. A potential sign error in calculations related to the heat capacity of an infinite spin chain is also noted, emphasizing the need for careful verification. The conversation highlights the complexities of deriving and validating expressions in statistical mechanics.
hilbert2
Science Advisor
Insights Author
Messages
1,600
Reaction score
607
TL;DR
About proving a summation rule that appears in theory of spin chains.
I ran into this kind of expression for a sum that appears in the theory of 1-dimensional Ising spin chains

##\displaystyle\sum\limits_{m=0}^{N-1}\frac{2(N-1)!}{(N-m-1)!m!}e^{-J(2m-N+1)/kT} = \frac{2e^{2J/kT-J(1-N)/kT}\left(e^{-2J/kT}(1+e^{2J/kT})\right)^N}{1+e^{2J/kT}}##

where the ##k## is the Boltzmann constant, ##J## is strength of magnetic interaction and ##T## is the absolute temperature.

It's quite simple to check that this holds for ##N=1##, ##N=2## and ##N=3##. However, it seems to be a bit more difficult to actually prove by induction than some other sums like

##\displaystyle\sum\limits_{m=1}^{N}m^2 = \frac{N(1+N)(1+2N)}{6}##,

where only the last term of the sum changes when ##N\mapsto N+1##.

If anyone wants to try to prove this as an exercise, be my guest and post it here... It's probably just about applying the binomial theorem.
 
Mathematics news on Phys.org
First we write ##\alpha =\dfrac{J}{kT}## and cancel ##2e^{(N-1)\alpha}## on both sides. Then the equation reads
$$
\sum_{m=0}^{N-1} \binom{N-1}{m}e^{2m\alpha} = \left( 1+e^{2\alpha} \right)^{N-1}
$$
 
Last edited:
  • Like
Likes hilbert2
Thanks,

so it's just the known formula

##\displaystyle (1+x)^n = \sum\limits_{k=0}^n \binom{n}{k}x^k##

with substitutions ##n=N-1##, ##k=m## and ##x=e^{2\alpha}##.
 
hilbert2 said:
Thanks,

so it's just the known formula

##\displaystyle (1+x)^n = \sum\limits_{k=0}^n \binom{n}{k}x^k##

with substitutions ##n=N-1##, ##k=m## and ##x=e^{2\alpha}##.
Yes, although the right hand side is written a bit more complicated than necessary:
$$
2x^{-\frac{n}{2}}(1+x)^n =2e^{-(N-1)\alpha} \cdot (1+e^{2\alpha})^{N-1} = \dfrac{2e^{2\alpha + (N-1)\alpha }\left( e^{-2\alpha} \left( 1+e^{2\alpha} \right)\right)^N}{1+e^{2\alpha}}
$$
I think I have found a sign error. On the left hand side we have
\begin{align*}
\sum_{m=0}^{N-1} \dfrac{ 2(N-1)! }{ (N-1-m)! m! } e^{ -2m \alpha + (N-1) \alpha } &= 2 e^{ (N-1) \alpha } \sum_{m=0}^{N-1} \binom{N-1}{m} \left( e^{ -2 \alpha } \right)^m \\ & = 2(e^{\alpha})^{N-1} \left( 1+e^{-2\alpha} \right)^{N-1}\\
&= 2 \left( e^\alpha + e^{-\alpha}\right)^{N-1} \\
&= 2 e^{-(N-1)\alpha}e^{+(N-1)\alpha} \left( e^\alpha + e^{-\alpha}\right)^{N-1}\\
&= 2 e^{-(N-1)\alpha}\left( e^{2\alpha} + 1 \right)^{N-1}
\end{align*}
Ok, no sign error. One just has to be very cautious.
 
  • Like
Likes hilbert2
Actually, there was a sign error somewhere when I calculated these sums with Mathematica to get an equation for the heat capacity of an infinite spin chain... It shouldn't be left in the equation above, but it's not impossible either.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
4
Views
2K
Replies
4
Views
627
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K