Erfan1
- 9
- 0
Prove that 1/(1*2*3) + 1/(2*3*4) + ... + 1/(n*(n+1)*(n+2)) = 1/4 - 1/(2*(n+1)*(n+2)
.
.
The forum discussion centers on proving the summation of the series defined by the equation 1/(1*2*3) + 1/(2*3*4) + ... + 1/(n*(n+1)*(n+2)) = 1/4 - 1/(2*(n+1)*(n+2)). Participants suggest using methods such as partial fraction decomposition and mathematical induction to derive the proof. The discussion highlights the successful application of the Heaviside cover-up method for partial fractions, confirming the validity of the decomposition and the telescoping nature of the series.
PREREQUISITESMathematicians, educators, students studying calculus or series, and anyone interested in advanced mathematical proofs and techniques.
Erfan said:Prove that 1/(1*2*3) + 1/(2*3*4) + ... + 1/(n*(n+1)*(n+2)) = 1/4 - 1/(2*(n+1)*(n+2)
.
MarkFL said:Hello Erfan,
Are you expected to use partial fraction decomposition or induction, or is the choice of method up to you? Can you show us what you have tried so far?
Erfan said:Prove that 1/(1*2*3) + 1/(2*3*4) + ... + 1/(n*(n+1)*(n+2)) = 1/4 - 1/(2*(n+1)*(n+2)
.
Yes it does work! Try it like this: $$\begin{array}{cccccc} S_n = \frac{1/2}1 &- \frac12 &+ \frac{1/2}3 \\ & + \frac{1/2}2 &- \frac13 &+ \frac{1/2}4 \\ && + \frac{1/2}3 &- \frac14 &+ \frac{1/2}5 \\ &&& + \frac{1/2}4 &-\frac15 &+\frac{1/2}6 \\ &&&& + \ldots, \end{array}$$ continuing like that until you get to the row $+\dfrac{1/2}n - \dfrac1{n+1} + \dfrac{1/2}{n+2}.$ Notice that apart from a few terms at the beginning and end of the sum, the terms in each column add up to $0$.Erfan said:Partial fractions !
I tried this 1/(r*(r+1)*(r+2)) = 1/(2r) - 1/(r+1) + 1/(2(r+2))
but it seems that this doesn't work :D