MHB Summing Infinite Series with Dilogarithms

Click For Summary
The discussion focuses on proving the infinite series sum involving harmonic numbers, specifically showing that the series equals \(\frac{11\pi^4}{360}\). The original poster presents a complex series and references a paper by Borwein & Borwein that discusses similar evaluations of Euler's sums. Another participant mentions using Dilogarithms as an alternative method for solving the problem, indicating a divergence in approaches to the same mathematical challenge. The conversation highlights the interplay between different mathematical techniques in evaluating series. Overall, the thread showcases advanced mathematical problem-solving and the use of specialized functions in series evaluation.
sbhatnagar
Messages
87
Reaction score
0
Hi everyone ;)

I have a challenging problem which I would like to share with you.

Prove that

\[\frac{1}{2^2}+ \frac{1}{3^2} \left(1+\frac{1}{2} \right)^2+\frac{1}{4^2} \left( 1+\frac{1}{2} +\frac{1}{3}\right)^2 + \frac{1}{5^2} \left( 1+\frac{1}{2} +\frac{1}{3}+\frac{1}{4}\right)^2 +\cdots= \frac{11\pi^4}{360}\]
 
Last edited:
Mathematics news on Phys.org
sbhatnagar said:
Hi everyone ;)

I have a challenging problem which I would like to share with you.

Prove that

\[\frac{1}{2^2}+ \frac{1}{3^2} \left(1+\frac{1}{2} \right)^2+\frac{1}{4^2} \left( 1+\frac{1}{2} +\frac{1}{3}\right)^2 + \frac{1}{5^2} \left( 1+\frac{1}{2} +\frac{1}{3}+\frac{1}{4}\right)^2 +\cdots= \frac{11\pi^4}{360}\]

The evaluation of...

$$S= \sum_{n=1}^{\infty} \frac{H_{n}^{2}}{(n+1)^{2}} = \frac{11}{360}\ \pi^{4}\ (1)$$

... as well as many other 'Euler's sums' has been performed using an 'intriguing integral' by Borwein & Borwein [;)] in... http://www.math.uwo.ca/~dborwein/cv/zeta4.pdf

Kind regards

$\chi$ $\sigma$
 
Thank you chisigma for that nice paper. :D My solution was different from the one given in it.

I used Dilogarithms to evaluate it.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 41 ·
2
Replies
41
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K