MHB Summing Infinite Series with Dilogarithms

Click For Summary
The discussion focuses on proving the infinite series sum involving harmonic numbers, specifically showing that the series equals \(\frac{11\pi^4}{360}\). The original poster presents a complex series and references a paper by Borwein & Borwein that discusses similar evaluations of Euler's sums. Another participant mentions using Dilogarithms as an alternative method for solving the problem, indicating a divergence in approaches to the same mathematical challenge. The conversation highlights the interplay between different mathematical techniques in evaluating series. Overall, the thread showcases advanced mathematical problem-solving and the use of specialized functions in series evaluation.
sbhatnagar
Messages
87
Reaction score
0
Hi everyone ;)

I have a challenging problem which I would like to share with you.

Prove that

\[\frac{1}{2^2}+ \frac{1}{3^2} \left(1+\frac{1}{2} \right)^2+\frac{1}{4^2} \left( 1+\frac{1}{2} +\frac{1}{3}\right)^2 + \frac{1}{5^2} \left( 1+\frac{1}{2} +\frac{1}{3}+\frac{1}{4}\right)^2 +\cdots= \frac{11\pi^4}{360}\]
 
Last edited:
Mathematics news on Phys.org
sbhatnagar said:
Hi everyone ;)

I have a challenging problem which I would like to share with you.

Prove that

\[\frac{1}{2^2}+ \frac{1}{3^2} \left(1+\frac{1}{2} \right)^2+\frac{1}{4^2} \left( 1+\frac{1}{2} +\frac{1}{3}\right)^2 + \frac{1}{5^2} \left( 1+\frac{1}{2} +\frac{1}{3}+\frac{1}{4}\right)^2 +\cdots= \frac{11\pi^4}{360}\]

The evaluation of...

$$S= \sum_{n=1}^{\infty} \frac{H_{n}^{2}}{(n+1)^{2}} = \frac{11}{360}\ \pi^{4}\ (1)$$

... as well as many other 'Euler's sums' has been performed using an 'intriguing integral' by Borwein & Borwein [;)] in... http://www.math.uwo.ca/~dborwein/cv/zeta4.pdf

Kind regards

$\chi$ $\sigma$
 
Thank you chisigma for that nice paper. :D My solution was different from the one given in it.

I used Dilogarithms to evaluate it.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 41 ·
2
Replies
41
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K