Surface current of superconducting sphere in magnetic field

AI Thread Summary
The discussion focuses on the behavior of surface currents in a superconducting sphere placed in a magnetic field, emphasizing the continuity of magnetic field components. It highlights that the magnetic field inside a superconductor is zero, leading to a surface current confined to the sphere's surface. The derived equation shows the relationship between the surface current density and the external magnetic field, resulting in a specific expression for the current. An additional note suggests that a factor of 1/3 may be relevant due to the spherical geometry. The conversation concludes with equations relating magnetization and magnetic fields in the context of the discussed model.
Jan05
Messages
5
Reaction score
0
Homework Statement
Suppose a sphere of superconductiong material is placed in a uniform magnetic field ##\mathbf{B} = B \, \hat{\mathbf{z}}##. What is the induced surface current distribution?
Relevant Equations
##\mathbf{B}_{above} - \mathbf{B}_{below} = \mu_0 (\mathbf{K} \times \hat{\mathbf{n}} )##
My idea was to use the continuity of parallel components of the magnetic field and the spherical coordinate system. Because the magnetic field in a superconducting material is 0 and the current is completely confined to the surface, there only is a ##\mathbf{B}_{above}## component. The equation then reduces to ##\mathbf{K} \times \hat{\mathbf{r}} = B / \mu_0 \, \hat{\mathbf{z}} ##. Then evaluating components and using ##\hat{\mathbf{z}} = \cos \theta \, \hat{\mathbf{r}} - \sin \theta \,\hat{\boldsymbol{\theta}}## we obtain ##K_\varphi \, \hat{\boldsymbol{\theta}} = B / \mu_0 \sin \theta \, \hat{\boldsymbol{\theta}}##. So ##\mathbf{K} = B / \mu_0 \sin \theta \, \hat{\boldsymbol{\varphi}}##.
 
Last edited:
Physics news on Phys.org
Last edited:
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top