Jan05
- 5
- 0
- Homework Statement
- Suppose a sphere of superconductiong material is placed in a uniform magnetic field ##\mathbf{B} = B \, \hat{\mathbf{z}}##. What is the induced surface current distribution?
- Relevant Equations
- ##\mathbf{B}_{above} - \mathbf{B}_{below} = \mu_0 (\mathbf{K} \times \hat{\mathbf{n}} )##
My idea was to use the continuity of parallel components of the magnetic field and the spherical coordinate system. Because the magnetic field in a superconducting material is 0 and the current is completely confined to the surface, there only is a ##\mathbf{B}_{above}## component. The equation then reduces to ##\mathbf{K} \times \hat{\mathbf{r}} = B / \mu_0 \, \hat{\mathbf{z}} ##. Then evaluating components and using ##\hat{\mathbf{z}} = \cos \theta \, \hat{\mathbf{r}} - \sin \theta \,\hat{\boldsymbol{\theta}}## we obtain ##K_\varphi \, \hat{\boldsymbol{\theta}} = B / \mu_0 \sin \theta \, \hat{\boldsymbol{\theta}}##. So ##\mathbf{K} = B / \mu_0 \sin \theta \, \hat{\boldsymbol{\varphi}}##.
Last edited: