Surface density of stars in a Galaxy

AI Thread Summary
The scale length of a galaxy's disk is defined as the distance over which the surface density of stars decreases by a factor of e. In this discussion, the surface density decreases by a factor of 10 over 9 kpc, leading to a calculated scale length of 9 kpc. The formula for surface density is σ(r) = σ0e−r/h, where σ0 is the central surface density and h is the scale length. A participant questions the assumption that e equals 10, indicating a potential misunderstanding of mathematical constants. The conversation highlights the importance of accurately interpreting the relationship between surface density and scale length in galactic structures.
Barbequeman
Messages
7
Reaction score
1
Homework Statement
The surface density of stars in a galaxy at a radius of 1 kpc from the centre is 100 Msun/pc^2. The surface density at 10 kpc is 10 Msun/pc^2. Assuming that the surface density of stars is given by the exponential law, calculate
(a) The scale length of the disk.
(b) The surface density at the centre of the galaxy.
Relevant Equations
σ(r) = σ0e−r/h
a.)
The scale length of the disk is the length over which the surface density of stars decreases by a factor of e. In this case, the surface density decreases by a factor of 10 over a distance of 9 kpc, so the scale length is 9 kpc. The surface density of stars at a radius of r from the center of the disk is given by: σ(r) = σ0e−r/h where σ0 is the central surface density and h is the scale length of the disk. We can rearrange this equation to solve for h: h = −r/ln(σ(r)/σ0) plugging in the values from the question, we get: h = −9 kpc/ln(10/100)
h = 9 kpc
 
Physics news on Phys.org
Barbequeman said:
The scale length of the disk is the length over which the surface density of stars decreases by a factor of e. In this case, the surface density decreases by a factor of 10 over a distance of 9 kpc, so the scale length is 9 kpc.
Ummm, back up a second. So you are saying that ##e = 10##?
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top