I'm having trouble evaluating this surface integral. This would be very simple to solve if the parameter domain of the variables u and u was a square region. However, that isn't the case here. I've tried using a change of variables and saying that u = r cos x, and v = r sin x. Where 0 < x < 2pi, and 0 < r < 2 for the limits of integration. However, computing the surface differential (absolute value of the cross product of the partial derivatives) using the new variables has become way to complicating and tedious. I end up with about 6 or 7 terms of sines and cosines under a square root that cannot be simplified. Was this the way to approach this problem? I also thought about parametrizing the region R, but I'm not sure how that would work.(adsbygoogle = window.adsbygoogle || []).push({});

Also, since I'm already here, how would I be able to do this for some general region R in the u-v plane? This is what lead me to think of a parametrization of a region R. So basically a parametrization within a parametrization. Mhmm, sounds interesting. Is that possible?

Thank you.

P.S. Tried looking around and haven't been able to find something that could answer my question.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Surface integrals/Surface areas of arbitrary domain regions

Loading...

Similar Threads - Surface integrals Surface | Date |
---|---|

I How come surface integrals are single integrals in my book? | Mar 2, 2017 |

A Surface Integral of a Scalar Field with Time Dependency | Feb 15, 2017 |

I Surface integral of nndS | Feb 14, 2017 |

I Surface of revolution of a donuts | Nov 15, 2016 |

**Physics Forums - The Fusion of Science and Community**