A Symmetry in terms of Lagrangian

zaman786
Messages
31
Reaction score
6
TL;DR Summary
how can we check symmetry of SM in terms of Lagrangian
Hi, as we know SM is symmetric under SU(3) X SU(2) X U(1) , But my question is , how can we check the invariance of terms in Lagrangian under these symmetries - thanks
 
Physics news on Phys.org
zaman786 said:
TL;DR Summary: how can we check symmetry of SM in terms of Lagrangian

Hi, as we know SM is symmetric under SU(3) X SU(2) X U(1) , But my question is , how can we check the invariance of terms in Lagrangian under these symmetries - thanks
You have to ensure that any of the terms entering the Lagrangian is in the trivial representation of the SM gauge groups. If they are, then the term is gauge invariant. If not it is not.
 
Orodruin said:
You have to ensure that any of the terms entering the Lagrangian is in the trivial representation of the SM gauge groups. If they are, then the term is gauge invariant. If not it is not.
ok- got it - thanks
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Back
Top