MHB Symmetry of Points Across y = x Line?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Line Symmetry
Click For Summary
The discussion focuses on proving that the points (a, b) and (b, a) are symmetric about the line y = x. It establishes that the slope of the line connecting these points is -1, indicating it is perpendicular to y = x, which has a slope of 1. To demonstrate symmetry, it is necessary to show that the midpoint of the segment connecting these points lies on the line y = x. The midpoint is calculated as the arithmetic means of the coordinates of the points A(a, b) and B(b, a). This proof confirms the symmetry of the points across the line y = x.
mathdad
Messages
1,280
Reaction score
0
Show that the points (a, b) and (b, a) are symmetric about the line y = x.

Solution:

Let m = slope

m = (a - b)/(b - a)

I know the slope of y = x is 1.

Must I now show that the line y = x passes through the midpoint? If so, how is this done when the slope is not a number (as in this example)?
 
Mathematics news on Phys.org
Note that $$m=\frac{a-b}{b-a}=-1$$. Therefore, the line connecting $A(a,b)$ and $B(b,a)$ is perpendicular to the graph of $y=x$ (it is known that the product of slopes of perpendicular lines is $-1$). It is left to show that the intersection point of the two lines divides the segment $AB$ in half. You can prove this by showing that the middle of $AB$ lies on $y=x$. Recall that the coordinates of the middle of $AB$ are the arithmetic means of the corresponding coordinates of $A$ and $B$.
 
Evgeny.Makarov said:
Note that $$m=\frac{a-b}{b-a}=-1$$. Therefore, the line connecting $A(a,b)$ and $B(b,a)$ is perpendicular to the graph of $y=x$ (it is known that the product of slopes of perpendicular lines is $-1$). It is left to show that the intersection point of the two lines divides the segment $AB$ in half. You can prove this by showing that the middle of $AB$ lies on $y=x$. Recall that the coordinates of the middle of $AB$ are the arithmetic means of the corresponding coordinates of $A$ and $B$.

Must I find the midpoint using the given points?
 
RTCNTC said:
Must I find the midpoint using the given points?
Yes, as I said,
Evgeny.Makarov said:
You can prove this by showing that the middle of $AB$ lies on $y=x$. Recall that the coordinates of the middle of $AB$ are the arithmetic means of the corresponding coordinates of $A$ and $B$.
 
Evgeny.Makarov said:
Yes, as I said,

Great. Very informative.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
Replies
28
Views
4K