Symmetry regarding induced potentials?

Click For Summary
SUMMARY

The discussion centers on the relationship between induced potentials in electrostatics, specifically addressing the equation ##\bar\phi_x(y)=\bar\phi_y(x)## as stated in the referenced paper. This relationship is justified through Green's Reciprocity Theorem, which establishes that for two charge densities leading to potentials via Poisson's equation, the reciprocal relation holds true when the charges are equal. The conversation also highlights the importance of considering induced surface charge density on conductors, which can be shown to have a net effect of zero due to the equipotential nature of the conductor's surface.

PREREQUISITES
  • Understanding of electrostatics and electric potentials
  • Familiarity with Poisson's equation and Green's Reciprocity Theorem
  • Knowledge of charge densities and their representation using delta functions
  • Concept of equipotential surfaces in conductors
NEXT STEPS
  • Study Green's Reciprocity Theorem in detail to understand its applications in electrostatics
  • Learn about Poisson's equation and its implications for electric potential calculations
  • Explore the concept of induced surface charge density on conductors
  • Investigate the properties of equipotential surfaces and their significance in electrostatic problems
USEFUL FOR

Students and professionals in physics, particularly those focusing on electrostatics, electrical engineering, and anyone interested in the mathematical foundations of electric potential theory.

haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
2024 Award
Messages
42,793
Reaction score
10,490
TL;DR
Is it true that the potential arising at A from induced charges on conductor B from point charge q at C = that arising at C from induction on B from charge q at A?
A homework thread, https://www.physicsforums.com/threa...etal-sheet-along-a-spherical-surface.1057702/, references https://arxiv.org/pdf/1007.2175.pdf.
There is an uncharged conductor and a point charge. In the paper referenced, ##\bar\phi_y(x)## is defined as the potential at x due to the induced charges on the conductor when the point charge is at y.
As justification for eqn 10 it states that ##\bar\phi_x(y)=\bar\phi_y(x)##.
I cannot see why that should be true, but I cannot construct any counterexample.
Is it evident, or maybe some standard result?
 
Physics news on Phys.org
Thank you for trying to clarify this point, I had already given up hope. But even if ##\bar\phi_x(y)=\bar\phi_y(x)## were true (assume this to be true for a moment, though it remains to be verified), what obvious relationship prompts the assertion that, since ##bar\phi_x(y)=\bar\phi_y(x)##, then ##\frac{q}{2} \nabla_x \phi_x(x) =- F(x)##?
 
haruspex said:
As justification for eqn 10 it states that ##\bar\phi_x(y)=\bar\phi_y(x)##.
I cannot see why that should be true, but I cannot construct any counterexample.
Is it evident, or maybe some standard result?
This is an interesting result that can be deduced from Green's Reciprocity Theorem (see equation 5).
 
  • Like
Likes   Reactions: PhDeezNutz, vanhees71 and haruspex
TSny said:
This is an interesting result that can be deduced from Green's Reciprocity Theorem (see equation 5).
Darn, you just beat me to it! But I'll go ahead and post my response:
Start from two charge densities ##\rho_x,\rho_y## that give rise to two electrostatic potentials ##\phi_x,\phi_y## via Poisson's equation:$$\nabla^{2}\phi_{x}\left(z\right)=-\rho_{x}\left(z\right)/\varepsilon,\;\nabla^{2}\phi_{y}\left(z\right)=-\rho_{y}\left(z\right)/\varepsilon$$and suppose that the charge densities and fields vanish sufficiently fast at spatial infinity so that boundary terms are ignorable (in other words, the usual physicist's assumption!). Then Green's second identity (https://en.wikipedia.org/wiki/Green's_identities) can be written in terms of ##\phi_1,\phi_2## as:$$0=\int\left(\phi_{x}\left(z\right)\nabla^{2}\phi_{y}\left(z\right)-\phi_{y}\left(z\right)\nabla^{2}\phi_{x}\left(z\right)\right)d^{3}z=\varepsilon^{-1}\int\left(\phi_{y}\left(z\right)\rho_{x}\left(z\right)-\phi_{x}\left(z\right)\rho_{y}\left(z\right)\right)d^{3}z$$where the integration extends over all space. This result is known in electrostatics as Green's Reciprocity (https://en.wikipedia.org/wiki/Reciprocity_(electromagnetism)). Now specialize to point charges ##\rho_{x}\left(z\right)=q_{x}\delta^{3}\left(z-x\right),\;\rho_{y}\left(z\right)=q_{y}\delta^{3}\left(z-y\right)## located at positions ##x,y##:$$0=\varepsilon^{-1}\int\left(\phi_{y}\left(z\right)q_{x}\delta^{3}\left(z-x\right)-\phi_{x}\left(z\right)q_{y}\delta^{3}\left(z-y\right)\right)d^{3}z=\varepsilon^{-1}\left(q_{x}\phi_{y}\left(x\right)-q_{y}\phi_{x}\left(y\right)\right)$$In particular, if ##q_x=q_y## (as is apparently the case in the cited external reference), then the simple reciprocal relation ##\phi_{y}\left(x\right)=\phi_{x}\left(y\right)## indeed holds.
 
  • Like
Likes   Reactions: vanhees71 and TSny
renormalize said:
Now specialize to point charges ##\rho_{x}\left(z\right)=q_{x}\delta^{3}\left(z-x\right),\;\rho_{y}\left(z\right)=q_{y}\delta^{3}\left(z-y\right)## located at positions ##x,y##:$$0=\varepsilon^{-1}\int\left(\phi_{y}\left(z\right)q_{x}\delta^{3}\left(z-x\right)-\phi_{x}\left(z\right)q_{y}\delta^{3}\left(z-y\right)\right)d^{3}z=\varepsilon^{-1}\left(q_{x}\phi_{y}\left(x\right)-q_{y}\phi_{x}\left(y\right)\right)$$In particular, if ##q_x=q_y## (as is apparently the case in the cited external reference), then the simple reciprocal relation ##\phi_{y}\left(x\right)=\phi_{x}\left(y\right)## indeed holds.
OK. But, besides the point charge, there will also be induced surface charge density on the conductor. So, the integration over ##\rho## should include integration over the surface of the conductor. However, you can show this integration equals zero using the fact that the conductor's surface is an equipotential surface and the net charge on the surface is zero.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 3 ·
Replies
3
Views
673
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K