MHB System of Equations for Second-Order IVP

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Change the second-order IVP into a system of equations
$y''+y'-2y=0\quad y(0)= 2\quad y'(0)=0$
let $x_1=y$ and $x_2=y'$ then $x_1'= x_2$ and $y''=x_2'$
then by substitution
$x_2'+x_2-2x_1=0$
then the system of first order of equations
$x_1'=x_2$
$x_2'=-x_2+2x_1$

hopefully so far..
 
Physics news on Phys.org
Yes, that is correct.

Now, what are $x_1(0)$ and $x_2(0)$?
 
Country Boy said:
Yes, that is correct.
Now, what are $x_1(0)$ and $x_2(0)$?
$x_1'=x_2=y(0)=0$
and
$x_2'=-x_2+2x_1=0+2(2)=4$

its like chasing a rabbit in the briers
 
Frankly, I am not sure what you are doing, You were told that y(0)= 2 and y'(0)= 0.

Since you defined $x_1(t)$ to be y(t) and $x_2(t)$ to be y'(t),
$x_1(0)= y(0)= 2$ and $x_2(0)= y'(0)= 0$
 
Country Boy said:
Frankly, I am not sure what you are doing, You were told that y(0)= 2 and y'(0)= 0.

Since you defined $x_1(t)$ to be y(t) and $x_2(t)$ to be y'(t),
$x_1(0)= y(0)= 2$ and $x_2(0)= y'(0)= 0$

i think I get confused looking at multiple examples with all these different substitutions
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads