MHB System of Equations for Second-Order IVP

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Change the second-order IVP into a system of equations
$y''+y'-2y=0\quad y(0)= 2\quad y'(0)=0$
let $x_1=y$ and $x_2=y'$ then $x_1'= x_2$ and $y''=x_2'$
then by substitution
$x_2'+x_2-2x_1=0$
then the system of first order of equations
$x_1'=x_2$
$x_2'=-x_2+2x_1$

hopefully so far..
 
Physics news on Phys.org
Yes, that is correct.

Now, what are $x_1(0)$ and $x_2(0)$?
 
Country Boy said:
Yes, that is correct.
Now, what are $x_1(0)$ and $x_2(0)$?
$x_1'=x_2=y(0)=0$
and
$x_2'=-x_2+2x_1=0+2(2)=4$

its like chasing a rabbit in the briers
 
Frankly, I am not sure what you are doing, You were told that y(0)= 2 and y'(0)= 0.

Since you defined $x_1(t)$ to be y(t) and $x_2(t)$ to be y'(t),
$x_1(0)= y(0)= 2$ and $x_2(0)= y'(0)= 0$
 
Country Boy said:
Frankly, I am not sure what you are doing, You were told that y(0)= 2 and y'(0)= 0.

Since you defined $x_1(t)$ to be y(t) and $x_2(t)$ to be y'(t),
$x_1(0)= y(0)= 2$ and $x_2(0)= y'(0)= 0$

i think I get confused looking at multiple examples with all these different substitutions
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Back
Top