MHB System of Equations for Second-Order IVP

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Change the second-order IVP into a system of equations
$y''+y'-2y=0\quad y(0)= 2\quad y'(0)=0$
let $x_1=y$ and $x_2=y'$ then $x_1'= x_2$ and $y''=x_2'$
then by substitution
$x_2'+x_2-2x_1=0$
then the system of first order of equations
$x_1'=x_2$
$x_2'=-x_2+2x_1$

hopefully so far..
 
Physics news on Phys.org
Yes, that is correct.

Now, what are $x_1(0)$ and $x_2(0)$?
 
Country Boy said:
Yes, that is correct.
Now, what are $x_1(0)$ and $x_2(0)$?
$x_1'=x_2=y(0)=0$
and
$x_2'=-x_2+2x_1=0+2(2)=4$

its like chasing a rabbit in the briers
 
Frankly, I am not sure what you are doing, You were told that y(0)= 2 and y'(0)= 0.

Since you defined $x_1(t)$ to be y(t) and $x_2(t)$ to be y'(t),
$x_1(0)= y(0)= 2$ and $x_2(0)= y'(0)= 0$
 
Country Boy said:
Frankly, I am not sure what you are doing, You were told that y(0)= 2 and y'(0)= 0.

Since you defined $x_1(t)$ to be y(t) and $x_2(t)$ to be y'(t),
$x_1(0)= y(0)= 2$ and $x_2(0)= y'(0)= 0$

i think I get confused looking at multiple examples with all these different substitutions
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 0 ·
Replies
0
Views
693
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
0
Views
709
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
21
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K