MHB System of Equations for Second-Order IVP

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Change the second-order IVP into a system of equations
$y''+y'-2y=0\quad y(0)= 2\quad y'(0)=0$
let $x_1=y$ and $x_2=y'$ then $x_1'= x_2$ and $y''=x_2'$
then by substitution
$x_2'+x_2-2x_1=0$
then the system of first order of equations
$x_1'=x_2$
$x_2'=-x_2+2x_1$

hopefully so far..
 
Physics news on Phys.org
Yes, that is correct.

Now, what are $x_1(0)$ and $x_2(0)$?
 
Country Boy said:
Yes, that is correct.
Now, what are $x_1(0)$ and $x_2(0)$?
$x_1'=x_2=y(0)=0$
and
$x_2'=-x_2+2x_1=0+2(2)=4$

its like chasing a rabbit in the briers
 
Frankly, I am not sure what you are doing, You were told that y(0)= 2 and y'(0)= 0.

Since you defined $x_1(t)$ to be y(t) and $x_2(t)$ to be y'(t),
$x_1(0)= y(0)= 2$ and $x_2(0)= y'(0)= 0$
 
Country Boy said:
Frankly, I am not sure what you are doing, You were told that y(0)= 2 and y'(0)= 0.

Since you defined $x_1(t)$ to be y(t) and $x_2(t)$ to be y'(t),
$x_1(0)= y(0)= 2$ and $x_2(0)= y'(0)= 0$

i think I get confused looking at multiple examples with all these different substitutions
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Back
Top