MHB T6.1.1 Find the volume of the solid

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Solid Volume
Click For Summary
The discussion focuses on finding the volume of a solid defined between the planes at x=0 and x=4, with square cross-sections whose diagonals extend from the parabola f_a(x) = -√x to f_b(x) = √x. The area of each square cross-section is confirmed to be 2x, derived from the relationship between the diagonal and the side length using the Pythagorean theorem. The volume is calculated using the integral V = ∫(from 0 to 4) 2x dx, resulting in a final volume of 16. The calculations and reasoning are validated, confirming the approach is correct. The overall conclusion is that the volume of the solid is 16.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{t6.1.1}$
$\text{The solid lies between planes perpendiaular to the}$
$\text{$x$-axis at $x=0$ and $x = 4$.}$
$\text{The cross-scctions perpendicular to the axis on the interval
$0 \le x \le 4$}$
$\text{are squrares whose diagonals run for the parabola $\displaystyle f_a(x)=-\sqrt{x}$
to $\displaystyle f_b(x)=\sqrt{x}$}$
$\text{Find the volume of the solid}$$\textit{the area of the square whose diagonal is from $-\sqrt{x}$ to $-\sqrt{x}$ is}$
\begin{align*}\displaystyle
A_{square}(x)&=[\sqrt{2x}]^2 \\
&=2x
\end{align*}

ok just want to see if the area of the square is ok before
\begin{align*}\displaystyle
I&=\int_{0}^{4} ? \,dx
\end{align*}

View attachment 7421
 

Attachments

  • t6.1.1.PNG
    t6.1.1.PNG
    2 KB · Views: 150
Physics news on Phys.org
karush said:
$\tiny{t6.1.1}$
$\text{The solid lies between planes perpendiaular to the}$
$\text{$x$-axis at $x=0$ and $x = 4$.}$
$\text{The cross-scctions perpendicular to the axis on the interval
$0 \le x \le 4$}$
$\text{are squrares whose diagonals run for the parabola $\displaystyle f_a(x)=-\sqrt{x}$
to $\displaystyle f_b(x)=\sqrt{x}$}$
$\text{Find the volume of the solid}$$\textit{the area of the square whose diagonal is from $-\sqrt{x}$ to $-\sqrt{x}$ is}$
\begin{align*}\displaystyle
A_{square}(x)&=[\sqrt{2x}]^2 \\
&=2x
\end{align*}

ok just want to see if the area of the square is ok before
\begin{align*}\displaystyle
I&=\int_{0}^{4} ? \,dx
\end{align*}

Hi karush,

Yes. Since the length of the diagonal of the square is $2\sqrt{x}$ if we take $y$ as the length of its side, by the Pythagorean theorem we have $y^2 + y^2=\left(2\sqrt{x}\right)^2\Rightarrow y^2=2x$. Therefore the area of the square is $2x$.
 
$\tiny{t6.1.1}$
$\text{The solid lies between planes perpendiaular to the}$
$\text{$x$-axis at $x=0$ and $x = 4$.}$
$\text{The cross-scctions perpendicular to the axis on the interval
$0 \le x \le 4$}$
$\text{are squrares whose diagonals run for the parabola $\displaystyle f_a(x)=-\sqrt{x}$
to $\displaystyle f_b(x)=\sqrt{x}$}$
$\text{Find the volume of the solid}$$\textit{the area of the square whose diagonal is from $-\sqrt{x}$ to $-\sqrt{x}$ is}$
\begin{align*}\displaystyle
A_{square}(x)&=[\sqrt{2x}]^2 \\
&=2x
\end{align*}
$\textit{so the Integral is:}$

$$\begin{align*}\displaystyle
V&=\int_{0}^{4} 2x \, dx\\
&=x^2\biggr|_0^4\\
&=16-0=\color{red}{16}
\end{align*} $$
 
karush said:
$\tiny{t6.1.1}$
$\text{The solid lies between planes perpendiaular to the}$
$\text{$x$-axis at $x=0$ and $x = 4$.}$
$\text{The cross-scctions perpendicular to the axis on the interval
$0 \le x \le 4$}$
$\text{are squrares whose diagonals run for the parabola $\displaystyle f_a(x)=-\sqrt{x}$
to $\displaystyle f_b(x)=\sqrt{x}$}$
$\text{Find the volume of the solid}$$\textit{the area of the square whose diagonal is from $-\sqrt{x}$ to $-\sqrt{x}$ is}$
\begin{align*}\displaystyle
A_{square}(x)&=[\sqrt{2x}]^2 \\
&=2x
\end{align*}
$\textit{so the Integral is:}$

$$\begin{align*}\displaystyle
V&=\int_{0}^{4} 2x \, dx\\
&=x^2\biggr|_0^4\\
&=16-0=\color{red}{16}
\end{align*} $$

Yes, since the volume of each square is given by $2x\,dx$ the volume is given by the integral $\int_0^4 2x\,dx$.
 

Similar threads