T6.1.1 Find the volume of the solid

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Solid Volume
Click For Summary
SUMMARY

The volume of the solid defined by cross-sections that are squares with diagonals running from the parabola \( f_a(x) = -\sqrt{x} \) to \( f_b(x) = \sqrt{x} \) between the planes \( x = 0 \) and \( x = 4 \) is calculated using integration. The area of each square cross-section is determined to be \( A_{square}(x) = 2x \). The volume \( V \) is then computed as \( V = \int_{0}^{4} 2x \, dx \), resulting in a final volume of 16 cubic units.

PREREQUISITES
  • Understanding of integral calculus, specifically definite integrals.
  • Knowledge of geometric properties of squares and the Pythagorean theorem.
  • Familiarity with the concept of cross-sections in solids of revolution.
  • Ability to work with functions and their graphical representations, particularly parabolas.
NEXT STEPS
  • Study the application of the Pythagorean theorem in geometric problems.
  • Learn about the method of cross-sections for calculating volumes of solids.
  • Explore more complex integrals involving variable limits and different shapes.
  • Investigate the properties of parabolas and their applications in real-world scenarios.
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus and geometry, as well as professionals involved in fields requiring spatial reasoning and volume calculations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{t6.1.1}$
$\text{The solid lies between planes perpendiaular to the}$
$\text{$x$-axis at $x=0$ and $x = 4$.}$
$\text{The cross-scctions perpendicular to the axis on the interval
$0 \le x \le 4$}$
$\text{are squrares whose diagonals run for the parabola $\displaystyle f_a(x)=-\sqrt{x}$
to $\displaystyle f_b(x)=\sqrt{x}$}$
$\text{Find the volume of the solid}$$\textit{the area of the square whose diagonal is from $-\sqrt{x}$ to $-\sqrt{x}$ is}$
\begin{align*}\displaystyle
A_{square}(x)&=[\sqrt{2x}]^2 \\
&=2x
\end{align*}

ok just want to see if the area of the square is ok before
\begin{align*}\displaystyle
I&=\int_{0}^{4} ? \,dx
\end{align*}

View attachment 7421
 

Attachments

  • t6.1.1.PNG
    t6.1.1.PNG
    2 KB · Views: 166
Physics news on Phys.org
karush said:
$\tiny{t6.1.1}$
$\text{The solid lies between planes perpendiaular to the}$
$\text{$x$-axis at $x=0$ and $x = 4$.}$
$\text{The cross-scctions perpendicular to the axis on the interval
$0 \le x \le 4$}$
$\text{are squrares whose diagonals run for the parabola $\displaystyle f_a(x)=-\sqrt{x}$
to $\displaystyle f_b(x)=\sqrt{x}$}$
$\text{Find the volume of the solid}$$\textit{the area of the square whose diagonal is from $-\sqrt{x}$ to $-\sqrt{x}$ is}$
\begin{align*}\displaystyle
A_{square}(x)&=[\sqrt{2x}]^2 \\
&=2x
\end{align*}

ok just want to see if the area of the square is ok before
\begin{align*}\displaystyle
I&=\int_{0}^{4} ? \,dx
\end{align*}

Hi karush,

Yes. Since the length of the diagonal of the square is $2\sqrt{x}$ if we take $y$ as the length of its side, by the Pythagorean theorem we have $y^2 + y^2=\left(2\sqrt{x}\right)^2\Rightarrow y^2=2x$. Therefore the area of the square is $2x$.
 
$\tiny{t6.1.1}$
$\text{The solid lies between planes perpendiaular to the}$
$\text{$x$-axis at $x=0$ and $x = 4$.}$
$\text{The cross-scctions perpendicular to the axis on the interval
$0 \le x \le 4$}$
$\text{are squrares whose diagonals run for the parabola $\displaystyle f_a(x)=-\sqrt{x}$
to $\displaystyle f_b(x)=\sqrt{x}$}$
$\text{Find the volume of the solid}$$\textit{the area of the square whose diagonal is from $-\sqrt{x}$ to $-\sqrt{x}$ is}$
\begin{align*}\displaystyle
A_{square}(x)&=[\sqrt{2x}]^2 \\
&=2x
\end{align*}
$\textit{so the Integral is:}$

$$\begin{align*}\displaystyle
V&=\int_{0}^{4} 2x \, dx\\
&=x^2\biggr|_0^4\\
&=16-0=\color{red}{16}
\end{align*} $$
 
karush said:
$\tiny{t6.1.1}$
$\text{The solid lies between planes perpendiaular to the}$
$\text{$x$-axis at $x=0$ and $x = 4$.}$
$\text{The cross-scctions perpendicular to the axis on the interval
$0 \le x \le 4$}$
$\text{are squrares whose diagonals run for the parabola $\displaystyle f_a(x)=-\sqrt{x}$
to $\displaystyle f_b(x)=\sqrt{x}$}$
$\text{Find the volume of the solid}$$\textit{the area of the square whose diagonal is from $-\sqrt{x}$ to $-\sqrt{x}$ is}$
\begin{align*}\displaystyle
A_{square}(x)&=[\sqrt{2x}]^2 \\
&=2x
\end{align*}
$\textit{so the Integral is:}$

$$\begin{align*}\displaystyle
V&=\int_{0}^{4} 2x \, dx\\
&=x^2\biggr|_0^4\\
&=16-0=\color{red}{16}
\end{align*} $$

Yes, since the volume of each square is given by $2x\,dx$ the volume is given by the integral $\int_0^4 2x\,dx$.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K