Taking the derivative of a function of a function

Click For Summary
The discussion centers on understanding the derivative of a function of a function, specifically in the context of physics notation. A user seeks clarification on the derivation of the equation v*(dv/dt) = d(v^2/2)/dt, referencing standard rules of differentiation. The chain rule is highlighted as essential for differentiating composite functions, such as v(t)^2. Users express confusion regarding the application of the chain rule in physics contexts but ultimately find clarity through discussion. The conversation emphasizes the importance of recognizing and applying the chain rule in derivative calculations.
ArisMartinez
Messages
2
Reaction score
0
Summary:: According to Yale’s University PHYS: 200:
v*(dv/dt) = d(v^2/2)/dt

Could someone explain how has he reached that conclusion? He claims to be some standard derivation rules, but I can’t find anything about it.

As much as I can tell: (dv/dt)* v = v’ * v = a* v

thanks!

[Moderator's note: moved from a technical forum.]
 
Physics news on Phys.org
Do you know the chain rule? What is ##\dfrac{d}{dt} v(t)^2##?
 
  • Like
Likes ArisMartinez
fresh_42 said:
Do you know the chain rule? What is ##\dfrac{d}{dt} v(t)^2##?
I do! But I coudn not see why I had to use the chain rule here. (I see it clearer when I have ie. (cos(x))^sin(x))

but I do now! I’m not used to the physics notation of derivatives. But that was helpful, so thanks a lot.
 
ArisMartinez said:
Could someone explain how has he reached that conclusion? He claims to be some standard derivation rules, but I can’t find anything about it.
If you're taking the derivative of a function of a function; e.g., something like this: ##\frac d{dx} f(g(x))##, the differentiation rule that should come to mind is the chain rule.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
2
Views
2K