Hello--(adsbygoogle = window.adsbygoogle || []).push({});

I have a function:

[tex]

u(t,\tau)=\frac{1}{\pi}\int_{0}^{\infty}\! G(\omega)\, d\omega

[/tex]

[tex]

G(\omega)=4\sqrt{\pi}\frac{\omega^{2}}{\omega_{0}^{3}}\mbox{exp}\left(-\frac{\omega^{2}}{\omega_{0}^{2}}\right)\mbox{cos\left(\omega t-\left(\frac{\omega}{\omega_{0}}\right)^{-\gamma}\omega\tau\right)\mbox{exp}\left(-\frac{1}{2Q}\left(\frac{\omega}{\omega_{0}}\right)^{-\gamma}\omega t\right)}

[/tex]

Now what I would like to do is to take the first time derivative of [tex]u(t,\tau)[/tex] to obtain the roots of [tex]\partial u(t,\tau) / \partial t = 0[/tex], where [tex]\partial u(t,\tau) / \partial t[/tex] is the derivative with respect to [tex]t[/tex].

How would I get started? I think that I need to somehow get rid of the improper integral so that I can then take the first derivative. I've noticed that for [tex]\omega \rightarrow \infty[/tex], [tex]G(\omega) \rightarrow 0[/tex].

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Taking the first derivative of a function with improper integral

**Physics Forums | Science Articles, Homework Help, Discussion**