Hello--(adsbygoogle = window.adsbygoogle || []).push({});

I have a function:

[tex]

u(t,\tau)=\frac{1}{\pi}\int_{0}^{\infty}\! G(\omega)\, d\omega

[/tex]

[tex]

G(\omega)=4\sqrt{\pi}\frac{\omega^{2}}{\omega_{0}^{3}}\mbox{exp}\left(-\frac{\omega^{2}}{\omega_{0}^{2}}\right)\mbox{cos\left(\omega t-\left(\frac{\omega}{\omega_{0}}\right)^{-\gamma}\omega\tau\right)\mbox{exp}\left(-\frac{1}{2Q}\left(\frac{\omega}{\omega_{0}}\right)^{-\gamma}\omega t\right)}

[/tex]

Now what I would like to do is to take the first time derivative of [tex]u(t,\tau)[/tex] to obtain the roots of [tex]\partial u(t,\tau) / \partial t = 0[/tex], where [tex]\partial u(t,\tau) / \partial t[/tex] is the derivative with respect to [tex]t[/tex].

How would I get started? I think that I need to somehow get rid of the improper integral so that I can then take the first derivative. I've noticed that for [tex]\omega \rightarrow \infty[/tex], [tex]G(\omega) \rightarrow 0[/tex].

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Taking the first derivative of a function with improper integral

Loading...

Similar Threads - Taking derivative function | Date |
---|---|

What is meant by "take the derivative of a function"? | Sep 28, 2015 |

Correct terminology for taking differentials? | Dec 7, 2014 |

Can I state that a of n is decreasing w/o taking the derivative | Oct 8, 2013 |

How to take the Partial Derivatives of a Function that is Defined Implicitly? | Nov 15, 2010 |

How to take the derivative of this function | Jan 20, 2004 |

**Physics Forums - The Fusion of Science and Community**