Taylor expansion of an Ising-like Hamiltonian

Silicon-Based
Messages
51
Reaction score
1
Homework Statement
Compute ##Z## and ##\log{Z}## of a set of ##N## two-level systems with total energy specified by the given Hamiltonian by Taylor expanding in powers of ##B## to first and second order.
Relevant Equations
$$H(\{n_i\}) = A\sum_{i=1}^{N}n_i + B\sum_{i=1}^{N-1}n_i n_{i+1}$$
##n_i = 0, 1## for ##i = 1, ..., N##
For the case when ##B=0## I get: $$Z = \sum_{n_i = 0,1} e^{-\beta H(\{n_i\})} = \sum_{n_i = 0,1} e^{-\beta A \sum_i^N n_i} =\prod_i^N \sum_{n_i = 0,1} e^{-\beta A n_i} = [1+e^{-\beta A}]^N$$
For non-zero ##B## to first order the best I can get is:
$$Z = \sum_{n_i = 0,1} e^{-\beta(A\sum_{i=1}^{N}n_i + B\sum_{i=1}^{N-1}n_i n_{i+1})} \approx \sum_{n_i = 0,1} e^{-\beta A\sum_{i=1}^{N}n_i} \left[1-\beta B \sum_{i=1}^{N-1}n_i n_{i+1} \right]$$ $$=
[1+e^{-\beta A}]^N - \beta B \sum_{n_i = 0,1} \sum_{i=1}^{N-1}n_i n_{i+1} e^{-\beta A\sum_{i=1}^{N}n_i}
$$ At this point I'm not sure how to evaluate the sums. Obiously, the only case when the sums yield a non-zero contribution is when ##n_i = n_{i+1} = 1##, but I don't know what ##e^{-\beta A\sum_{i=1}^{N}n_i}## evaluates to in that case. Should this just be ##-\beta B (N-1) e^{-\beta A N}##? That doesn't seem like the right answer since I can't really evaluate ##\log{Z}## then.
 
Physics news on Phys.org
It seems like it would be easier to turn the sums in the arguments of the exponential into products of exponentials like you did in the ##B=## case. So you get
$$
Z = \prod_i \sum_{n_i = 0,1} \exp\left( - \beta A n_i - \beta B n_i n_{i+1} \right) \approx \prod_i \sum_{n_i = 0,1} \exp\left( - \beta A n_i \right) \left[ 1 - \beta B n_i n_{i+1} \right].
$$
Now the sum over ##n_i = 0,1## is straightforward, and the same idea applies to second-order in ##B##.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top