Tension in cable D is equivalent to the tension in cable B?

  • Thread starter Thread starter yashboi123
  • Start date Start date
  • Tags Tags
    Tension
AI Thread Summary
The tension in cable D is not equivalent to the tension in cable B due to the different forces acting on the engine. The tension in cable B is influenced by the weight of the engine and the vertical component of cable C, while cable D only counteracts the weight of the engine. A free body diagram shows that the tension in cable D must equal the weight of the engine, leading to the equation T_D - mg = 0. Since cable D is below cable C, the vertical component of cable C's tension does not affect cable D's tension. Thus, the tensions in cables B and D are not equivalent.
yashboi123
Messages
17
Reaction score
0
Homework Statement
In a repair shop a truck engine that has mass 429 kg
is held in place by four light cables (Figure 1). Cable A is horizontal, cables B
and D are vertical, and cable C makes an angle of 37.1∘
with a vertical wall. Tension in cable A is 757 N.
Relevant Equations
T - mg = ma
1695597452948.png


I found the tension of cable B by doing mg + Csin(37.1). I found C by doing 757(Tension in cable A) = Ccos(37.1).
I was just wondering if the tension in cable D is equivalent to the tension in cable B. If possible please show the steps on how you determined if they are equivalent or not.
Thank you!
 
Physics news on Phys.org
yashboi123 said:
Homework Statement: In a repair shop a truck engine that has mass 429 kg
is held in place by four light cables (Figure 1). Cable A is horizontal, cables B
and D are vertical, and cable C makes an angle of 37.1∘
with a vertical wall. Tension in cable A is 757 N.
Relevant Equations: T - mg = ma

View attachment 332527

I found the tension of cable B by doing mg + Csin(37.1). I found C by doing 757(Tension in cable A) = Ccos(37.1).
I was just wondering if the tension in cable D is equivalent to the tension in cable B. If possible please show the steps on how you determined if they are equivalent or not.
Thank you!
That sounds like part "C". per forum rules you must show us, if you get stuck after a reasonable attempt we help.
 
erobz said:
That sounds like part "C". per forum rules you must show us, if you get stuck after a reasonable attempt we help.
No it's not a part C, I'm just curious lol promise. Here is the full page
1695598230962.png
 
Well, if you want to find the tension in the rope ##D## do a free body diagram of the engine.
 
It would be tension upward(or normal force since they are equivalent in this situation) and mg downward. I suppose then they wouldn't be equivalent since in this situation we only take into account mg, not the vertical tension in cable C since cable D is below that point.
 
yashboi123 said:
It would be tension upward(or normal force since they are equivalent in this situation) and mg downward. I suppose then they wouldn't be equivalent since in this situation we only take into account mg, not the vertical tension in cable C since cable D is below that point.
Is my thought process correct here?
 
yashboi123 said:
Is my thought process correct here?
Yeah, there are two forces acting on the engine block on opposite directions, and the engine is not accelerating. We know one of them is it weight the other is the tension in rope ##D##, hence;

$$T_D - mg = 0 $$
 
erobz said:
Yeah, there are two forces acting on the engine block on opposite directions, and the engine is not accelerating. We know one of them is it weight the other is the tension in rope ##D##, hence;

$$T_D - mg = 0 $$
Thanks mate, that was a dumb mistake from me it's pretty clear since D is below C the vertical component of Tc wouldn't be considered.
 
yashboi123 said:
Thanks mate, that was a dumb mistake from me it's pretty clear since D is below C the vertical component of Tc wouldn't be considered.
You're Welcome.
 
Last edited:
Back
Top