Quantum Tensor networks and tensor algebra

AI Thread Summary
Literature recommendations for tensor networks include "Tensor Networks: From Mathematics to Applications" by Stefan E. Schiefer, which offers a comprehensive overview of tensor networks and relevant mathematical concepts like spectral and singular value decomposition. "An Introduction to Tensor Networks" by M.M. Wolf introduces various aspects of tensor networks along with necessary linear algebra background. G. Vidal's "Quantum Many-Body Systems in Condensed Matter Physics" explores tensor networks in the context of quantum systems and their applications. "Tensor Network Theory" by Guifré Vidal provides an in-depth analysis of tensor networks and related mathematical topics. Finally, "Entanglement in Quantum Information Theory" by John Watrous discusses tensor networks within the framework of quantum information.
Silicon-Based
Messages
51
Reaction score
1
I'm looking for literature recommendations regarding tensor networks. I never came across singular value decomposition or spectral decomposition in my linear algebra classes, so I need to brush up on the relevant mathematical background as well.
 
Physics news on Phys.org
For literature recommendations regarding tensor networks, consider the following books:1. Tensor Networks: From Mathematics to Applications, by Stefan E. Schiefer. This book provides a comprehensive overview of tensor networks and their applications in physics, computer science, and mathematics. It also covers topics such as spectral decomposition and singular value decomposition. 2. An Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States, by M.M. Wolf. This book provides an introduction to various aspects of tensor networks, including their mathematical background. It also discusses the relevant linear algebra topics such as singular value decomposition and spectral decomposition. 3. Quantum Many-Body Systems in Condensed Matter Physics: From Basics to Real-World Applications, by G. Vidal. This book provides a comprehensive overview of quantum many-body systems and their applications in condensed matter physics. It also covers topics such as tensor networks and their applications, as well as relevant linear algebra topics such as singular value decomposition and spectral decomposition. 4. Tensor Network Theory, by Guifré Vidal. This book provides an in-depth look at tensor networks and their applications. It also covers topics such as singular value decomposition and spectral decomposition. 5. Entanglement in Quantum Information Theory, by John Watrous. This book provides an introduction to entanglement in quantum information theory. It also covers topics such as tensor networks and their applications, as well as relevant linear algebra topics such as singular value decomposition and spectral decomposition.
 
For the following four books, has anyone used them in a course or for self study? Compiler Construction Principles and Practice 1st Edition by Kenneth C Louden Programming Languages Principles and Practices 3rd Edition by Kenneth C Louden, and Kenneth A Lambert Programming Languages 2nd Edition by Allen B Tucker, Robert E Noonan Concepts of Programming Languages 9th Edition by Robert W Sebesta If yes to either, can you share your opinions about your personal experience using them. I...
Hi, I have notice that Ashcroft, Mermin and Wei worked at a revised edition of the original solid state physics book (here). The book, however, seems to be never available. I have also read that the reason is related to some disputes related to copyright. Do you have any further information about it? Did you have the opportunity to get your hands on this revised edition? I am really curious about it, also considering that I am planning to buy the book in the near future... Thanks!

Similar threads

Replies
8
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
11
Views
2K
Replies
8
Views
2K
Replies
5
Views
4K
Back
Top