Undergrad Tensors: Bar Symbol Over Functions or Indices?

Click For Summary
The discussion centers on the notation used when transforming tensor quantities between coordinate systems, specifically whether to place a bar over the functions or the indices. Participants express that this choice is largely a matter of notational preference, with some advocating for bars over indices to indicate the same tensor field in different coordinates. There is agreement that the tensor symbol itself remains invariant, while the components are basis-dependent. The conversation also touches on the importance of considering overlapping regions of the manifold when applying these transformations. Overall, the clarity of notation can depend on the specific problem being addressed.
kent davidge
Messages
931
Reaction score
56
When dealing with any tensor quantity, when making a coordinate transformation, we should put a bar (or whatever symbol) over the functions or over the indices? For exemple, should the metric coefficients ##g_{\mu \nu}## be written in another coord sys as ##\bar g_{\mu \nu}## or as ##g_{\bar \mu \bar \nu}##?
 
Physics news on Phys.org
I think this is more of a notational preference. There might be a clearer choice depending on the type of problem you’re working, though. Personally, if I’m referring to the same tensor field simply in different coordinates, it usually makes more sense to me to put the bars over the indices.
 
  • Like
Likes kent davidge and Orodruin
Pencilvester said:
Personally, if I’m referring to the same tensor field simply in different coordinates, it usually makes more sense to me to put the bars over the indices.
I fully agree. The symbol itself is the field that does not care about coordinates and what actually is basis dependent are the components. Unfortunately, many people don't agree ...
 
  • Like
Likes Pencilvester and kent davidge
Pencilvester said:
I think this is more of a notational preference. There might be a clearer choice depending on the type of problem you’re working, though. Personally, if I’m referring to the same tensor field simply in different coordinates, it usually makes more sense to me to put the bars over the indices.
Orodruin said:
I fully agree. The symbol itself is the field that does not care about coordinates and what actually is basis dependent are the components. Unfortunately, many people don't agree ...
Thank you. For this to be valid, we should consider the same region of the manifold before and after the parametrization, correct? Because otherwise the domain of the functions would be different, what in turn makes the functions different.
 
kent davidge said:
Thank you. For this to be valid, we should consider the same region of the manifold before and after the parametrization, correct? Because otherwise the domain of the functions would be different, what in turn makes the functions different.
It sounds like you’re thinking about overlapping charts on a manifold, in which case, yes, you should be looking at where the domains of the coordinate functions overlap. However, for many problems, the issue is not getting from one patch of spacetime to another, it’s what happens simply when we transform the coordinates we’re using (think of almost all problems in SR, where most reasonable choices of coordinates for inertial observers cover the entire manifold).
 
  • Like
Likes kent davidge
Pencilvester said:
It sounds like you’re thinking about overlapping charts on a manifold, in which case, yes, you should be looking at where the domains of the coordinate functions overlap. However, for many problems, the issue is not getting from one patch of spacetime to another, it’s what happens simply when we transform the coordinates we’re using (think of almost all problems in SR, where most reasonable choices of coordinates for inertial observers cover the entire manifold).
Thanks!
 
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 7 ·
Replies
7
Views
788
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K