MHB Test for compatibility of equations - Determinant |A b|

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Determinant Test
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $Ax=b$ be a system of linear equations, where the number of equations is by one larger than the number of unknown variables, so the matrix $A$ is of full column rank.

Why can the test for combatibility of equations use the criterion of the determinant $|A \ b|$ ? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $Ax=b$ be a system of linear equations, where the number of equations is by one larger than the number of unknown variables, so the matrix $A$ is of full column rank.

Why can the test for combatibility of equations use the criterion of the determinant $|A \ b|$ ?

Hey mathmari!

What is this "test for compatibility of equations"? (Wondering)

How is $|A \ b|$ a determinant? It's not a square matrix is it? (Wondering)
Did you perhaps mean the Matlab notation [M]A \ b[/M], which means $A^+b$?
 
Klaas van Aarsen said:
What is this "test for compatibility of equations"? (Wondering)

The test if the system is solvable.
Klaas van Aarsen said:
How is $|A \ b|$ a determinant? It's not a square matrix is it? (Wondering)
Did you perhaps mean the Matlab notation [M]A \ b[/M], which means $A^+b$?

But isn't the augmented matrix $(A\mid b)$ a square matrix, since the number of equations is by one larger than the number of unknown variables and that means that $A$ is a $n\times (n-1)$ matrix, or not? (Wondering)
 
mathmari said:
The test if the system is solvable.

But isn't the augmented matrix $(A\mid b)$ a square matrix, since the number of equations is by one larger than the number of unknown variables and that means that $A$ is a $n\times (n-1)$ matrix, or not?

Ah okay.

If the system has a solution, then $b$ must be in the column space of $A$ yes? (Wondering)
That is, we can write $b$ as a linear combination of the column vectors in $A$.

Doesn't that imply that the determinant of the augmented matrix $(A\mid b)$ is zero? (Thinking)
 
I suspect you mean "compatibility", not "combatibiity"!

No one wants equations to fight!

If the number of equations is greater than the number of unknowns and the equations are "independent" there is no solution. There may be a solution if the equations are "dependent" which means the determinant must be 0.
 
Last edited by a moderator:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top