Textbook 'The Physics of Waves': Lifetime of SHM Oscillators

AI Thread Summary
The discussion centers on the concept of "lifetime" in oscillators, particularly focusing on underdamped, overdamped, and critically damped systems. It clarifies that while the lifetime of underdamped oscillators is defined as the time for amplitude to reduce by half, similar definitions can apply to overdamped and critically damped oscillators, although they typically do not exhibit oscillations. The term "lifetime" can be vague, with various definitions such as the time for amplitude reduction by factors of 1/e or 1/sqrt(e). The equations for overdamped and critically damped oscillators differ from underdamped ones, but the underlying principle of amplitude decay remains consistent across all types. Understanding these distinctions is crucial for accurately describing the behavior of different oscillator types.
brettng
Messages
17
Reaction score
0
Homework Statement
The lifetime of the state in free oscillation is of order ##\frac 1 { \Gamma }##.
Relevant Equations
$$\tau=\frac { \ln(4) } { \Gamma }$$
Reference textbook “The Physics of Waves” in MIT website:
https://ocw.mit.edu/courses/8-03sc-...es-fall-2016/resources/mit8_03scf16_textbook/

Chapter 2 - Section 2.3.2 [Page 47] (see attached file)


Question: In the content, it states that the lifetime of the state in free oscillation is of order ##\frac 1 { \Gamma }##. To my understanding, it means particularly the half-life of underdamped oscillators with position ##x\left( t \right)##:
$$x\left( t \right)=Ae^{ -\frac {\Gamma t} {2} }\cos(\omega t-\theta)$$

However, could I consider the "half-life" of overdamped oscillators and critically damped oscillators?

If so, would it still be of order ##\frac 1 { \Gamma }##?

1.JPG
 
Last edited:
Physics news on Phys.org
brettng said:
In the content, it states that the lifetime of the state in free oscillation is of order ##\frac 1 { \Gamma }##.
Do you understand what is meant here by "lifetime"? Also, what do the equations for ##x(t)## look like over damped and critically damped oscillators?
 
DrClaude said:
Do you understand what is meant here by "lifetime"? Also, what do the equations for ##x(t)## look like over damped and critically damped oscillators?
I understand that lifetime means that the oscillation amplitude reduces by a factor of 2.

So, why can’t we still consider the “lifetime” of overdamped and critically damped oscillators by using the same definition?
 
In practice, people only refer to "oscillations" wrt underdamped systems. Otherwise we tend to use "rise time"; usually defined as 10-90%, tr = 2.2τ. But it is the equation that holds the real answers, the rest is just jargon.
 
  • Like
Likes brettng and DrClaude
brettng said:
I understand that lifetime means that the oscillation amplitude reduces by a factor of 2.
That would be the half-life. Lifetime itself is actually more vague. For instance, in this case one could take ##\tau = 1/\Gamma##, which would be the time for the oscillation amplitude to be reduced by a factor ##1/\sqrt{e}##, or ##\tau = 2/\Gamma##, for a reduction of the amplitude by ##1/e##. They are all of order ##1/\Gamma##, as the text states, and as @DaveE stated, they all relate to a decrease of the amplitude of oscillations, and different terminology is used for critically and over-damped oscillators, which do not actually oscillate.
 
  • Like
Likes brettng and DaveE
Thank you so much for your help!!!!!!
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Back
Top