MHB The Benefits of Learning a Second Language

  • Thread starter Thread starter Lorena_Santoro
  • Start date Start date
  • Tags Tags
    Language
AI Thread Summary
The discussion focuses on a mathematical approach to finding the limit of a specific expression involving sin(x) and x. The method involves using algebraic manipulation followed by L'Hôpital's Rule to differentiate the numerator and denominator. After several iterations of differentiation, the final result indicates that the limit approaches 0. Participants appreciate the creativity of the solution, suggesting it could benefit others if shared on platforms like YouTube. Overall, the conversation highlights an unconventional yet effective technique for solving the limit problem.
Lorena_Santoro
Messages
22
Reaction score
0
 
Mathematics news on Phys.org
This may not be the simplest way to do it but the first thing I would do is do the algebra: 1/x- 1/sin(x)= sin(x)/xsin(x)- x/xsin(x)= (sin(x)- x)/xsin(x). Now use L'hopital. The derivative of sin(x)- x is cos(x)- 1 and the derivative of xsin(x) is sin(x)+ xcos(x). Both of those is 0 at x= 0 so do it again. Differentiating cos(x)-1 gives -sin(x). Differentiating sin(x)+ xcos(x) gives cos(x)+ cos(x)- xsin(x)= 2cos(x)-xsin(x). Finally, the numerator goes to 0 while the denominator goes to 2.

The limit is 0.
 
Country Boy said:
This may not be the simplest way to do it but the first thing I would do is do the algebra: 1/x- 1/sin(x)= sin(x)/xsin(x)- x/xsin(x)= (sin(x)- x)/xsin(x). Now use L'hopital. The derivative of sin(x)- x is cos(x)- 1 and the derivative of xsin(x) is sin(x)+ xcos(x). Both of those is 0 at x= 0 so do it again. Differentiating cos(x)-1 gives -sin(x). Differentiating sin(x)+ xcos(x) gives cos(x)+ cos(x)- xsin(x)= 2cos(x)-xsin(x). Finally, the numerator goes to 0 while the denominator goes to 2.

The limit is 0.

Indeed. This might not be the simplest way to go around it but it's really creative! Thanks and would be even greater if you comment below the video on Youtube so others can also get to know your way of solving it.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top