The Central Field Approximation for Many-Electron Atoms

Click For Summary

Discussion Overview

The discussion revolves around the central field approximation for many-electron atoms, exploring how this model treats electron interactions and potential energy in relation to the nucleus. Participants examine the implications of this approximation for understanding effective nuclear charge and the behavior of electrons at varying distances from the nucleus.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants question whether, in the central field approximation, all charges (protons and electrons) are treated as being in the nucleus, suggesting that this simplification does not hold since effective nuclear charge (##Z_{eff}##) is greater than 1.
  • It is proposed that the potential function ##U(r)## is not simply proportional to ##1 / r##, indicating that charge is distributed rather than concentrated at the nucleus.
  • Some participants assert that the potential ##U(r)## is derived empirically, without specific theoretical assumptions about the distances of other charges from the center.
  • There is a suggestion that the central field approximation is most applicable to electrons in the outermost shell, which are farthest from the nucleus.
  • A participant references their inorganic chemistry textbook, noting that for the helium atom, an effective nuclear charge of 1.69 approximates the ground state energy, and discusses how this changes in excited states.
  • Another participant expresses appreciation for clear explanations and inquires about the applicability of the discussion to more complex systems like molecules.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the treatment of charges in the central field approximation, with multiple competing views on how effective nuclear charge is calculated and the implications for electron behavior at different distances from the nucleus.

Contextual Notes

Limitations include the empirical nature of the potential function ##U(r)## and the lack of clarity regarding the specific distances of other electrons in relation to the electron of interest.

rtareen
Messages
162
Reaction score
32
TL;DR
My book (Young and Freedman 14th) doesn't go into detail about the central field approximation other than saying the potential energy only has a radial component.
Attached is my book's section on many-electron atoms. It says that in the central field approximation, an electron's potential energy is a function of its distance from the nucleus. Later on it says there is an effective atomic number. Does this mean that in this approximation, all charges (protons and electrons) are taken to be in the nucleus? That's very simple to understand. But if that's not the case, how does it actually work? Are the other electrons given certain distances from the electron of interest? How would it work for electrons that closer to the nucleus or farther out?
 

Attachments

Physics news on Phys.org
rtareen said:
Does this mean that in this approximation, all charges (protons and electrons) are taken to be in the nucleus?

No, for two reasons.

First, as noted in the discussion around equation 41.45, if all of the charges except the single electron being considered were treated as being in the nucleus (or at least closer to it than that single electron), then ##Z_{eff}## would be exactly ##1##. In fact it is larger than ##1##, so only a portion of the other electrons' charges are being treated as screening the nuclear charge.

Second, if all of the charge except for the single electron being considered was treated as being in the nucleus, then the potential would just be proportional to ##1 / r##. But, as noted, the potential function ##U(r)## is not that simple. That effectively means that the charge is spread out, not all at the center.

rtareen said:
Are the other electrons given certain distances from the electron of interest?

Not as far as I know; my understanding is that the potential ##U(r)## is derived empirically, not from any specific theoretical assumption about distances of the other charges from the center.

rtareen said:
How would it work for electrons that closer to the nucleus or farther out?

As far as I know, the central field approximation works best for electrons in the outermost shell, i.e., the ones farthest from the nucleus.
 
  • Like
Likes   Reactions: rtareen
PeterDonis said:
No, for two reasons.

First, as noted in the discussion around equation 41.45, if all of the charges except the single electron being considered were treated as being in the nucleus (or at least closer to it than that single electron), then ##Z_{eff}## would be exactly ##1##. In fact it is larger than ##1##, so only a portion of the other electrons' charges are being treated as screening the nuclear charge.

Second, if all of the charge except for the single electron being considered was treated as being in the nucleus, then the potential would just be proportional to ##1 / r##. But, as noted, the potential function ##U(r)## is not that simple. That effectively means that the charge is spread out, not all at the center.

Not as far as I know; my understanding is that the potential ##U(r)## is derived empirically, not from any specific theoretical assumption about distances of the other charges from the center.

As far as I know, the central field approximation works best for electrons in the outermost shell, i.e., the ones farthest from the nucleus.

Every time you explain something it is always so clear-cut and easy to understand. I always feel satisfied with your answers. Unfortunately the next chapter is about molecules and condensed matter, which is a subforum I can see you have never posted in. Would you be willing to look out for me over there?
 
  • Like
Likes   Reactions: weirdoguy
rtareen said:
Every time you explain something it is always so clear-cut and easy to understand. I always feel satisfied with your answers.

Thanks! Glad I could help.

rtareen said:
Would you be willing to look out for me over there?

If the question is a general question about how QM models more complex systems like molecules, it could also be asked in this forum.
 
My inorganic chemistry textbook (Housecroft & Sharpe) says that for the helium atom, an effective nuclear charge of 1.69 gives the closest approximation to the ground state energy in the central field approximation. If the helium atom is put in an excited state where one electron occupies the 1s orbital and another is somewhere much higher, like 50s orbital, the electron in the high excited state sees an effective nuclear charge of approximately 1.00 because of its greater distance from the nucleus. The same applies to a muonic helium atom where one electron and one muon orbit the nucleus.
 
  • Like
Likes   Reactions: rtareen

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
8K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K