Kreizhn
- 714
- 1
This may seem like a foolish question, but I can't seem to find the answer anywhere. Also, please forgive the question if it is ambiguous but the context in which it arises is not clear to me:
There is a mapping H(x,p,\cdot): \mathbb R \to \mathbb R with x,p fixed, which attains its maxima at K distinct points u_k, k \in\left\{1,\ldots, K\right\}. Each point u_k is a critical point with a singularity of codimension c_k.
What is the codimension of a singularity?
I believe the author plans on later generalizing this for a mapping H:T^*M\times\mathbb R \to \mathbb R for smooth mfld M, so if you could explain it in that context it would be helpful.
There is a mapping H(x,p,\cdot): \mathbb R \to \mathbb R with x,p fixed, which attains its maxima at K distinct points u_k, k \in\left\{1,\ldots, K\right\}. Each point u_k is a critical point with a singularity of codimension c_k.
What is the codimension of a singularity?
I believe the author plans on later generalizing this for a mapping H:T^*M\times\mathbb R \to \mathbb R for smooth mfld M, so if you could explain it in that context it would be helpful.