Differential operator vs one-form (covector field)

  • #1
cianfa72
1,847
204
TL;DR Summary
About the definition of differential operator of a scalar function as one-form or covector field
Hi, I'd like to ask for clarification about the definition of differential of a smooth scalar function ##f: M \rightarrow \mathbb R## between smooth manifolds ##M## and ##\mathbb R##.

As far as I know, the differential of a scalar function ##f## can be understood as:
  1. a linear map ##df()## between tangent spaces defined at each point of domain and target manifolds (##T_{p}M## and ##T_{q}\mathbb R##)
  2. a one-form or covector field ##df## defined on the domain manifold ##M##

In both cases ##d()## operator is actually the exterior derivative operator and both definitions should be actually equivalent.

Does it make sense ? Thank you.
 
Physics news on Phys.org
  • #2
cianfa72 said:
TL;DR Summary: About the definition of differential operator of a scalar function as one-form or covector field

Hi, I'd like to ask for clarification about the definition of differential of a smooth scalar function ##f: M \rightarrow \mathbb R## between smooth manifolds ##M## and ##\mathbb R##.

As far as I know, the differential of a scalar function ##f## can be understood as:
  1. a linear map ##df()## between tangent spaces defined at each point of domain and target manifolds (##T_{p}M## and ##T_{q}\mathbb R##)
  2. a one-form or covector field ##df## defined on the domain manifold ##M##

In both cases ##d()## operator is actually the exterior derivative operator and both definitions should be actually equivalent.

Does it make sense ? Thank you.
Yes. These are two ways to look at derivatives. It all depends on what you consider to be a variable: function, location, manifold, tangent vectors, or combinations of them.

The two definitions above are equivalent if you consider the union over all locations in the first definition, i.e. make it a (co-)vector field.
 
  • #3
fresh_42 said:
The two definitions above are equivalent if you consider the union over all locations in the first definition, i.e. make it a (co-)vector field.
You basically mean "extend" the definition of differential operator on all the points on the manifold turning it into a field defined on it, right ?
 
  • #4
Your first definition was a specific linear map at ##p## and the second one was a vector field from the beginning. This means you need to define ##\displaystyle{ df\, : \,\bigsqcup_{p\in M} T_pM\rightarrow \bigsqcup_{p\in M} T_{f(p)}\mathbb{R}}## simply to make them the same thing.
 
  • Like
Likes cianfa72
  • #5
fresh_42 said:
Your first definition was a specific linear map at ##p## and the second one was a vector field from the beginning.
You mean a co-vector field, I believe.
 
  • #6
cianfa72 said:
You mean a co-vector field, I believe.
This also only depends on the perspective. I admit that I tend to confuse the two, and from a mathematical point of view, they aren't very different. What is a slope ##s##? Is it the linear map "times ##s##" or is it the line with the slope ##s,## or is it the scalar ##s## we attach to the derivative a some point?

Your example consists of linear mappings from vector spaces into vector spaces. However, the codomain vector spaces are all ##T_q\mathbb{R}=\mathbb{R}.## So do you map vectors into the scalar field ##\mathbb{R}## making them covectors, or into the tangent space ##T_q\mathbb{R}## which would be a linear map? Linear maps on the other hand can be seen as ##(1,1)##-tensors, i.e. a linear combination of covectors.

I think the latter is the correct point of view in this case. We have a linear map ##d_pf\, : \,T_pM\longrightarrow T_{f(p)\mathbb{R}}## which can be written as
$$
d_pf(v)=\left(\sum_\rho u_\rho^*\otimes V_\rho\right)(v)=\sum_\rho u_\rho^*(v)\cdot V_\rho
$$
with covectors ##u_\rho^* \in (T_pM)^*\, , \,v\in T_pM,## and ##V_\rho\in T_{f(p)}\mathbb{R}.## I have treated ##\mathbb{R}## as a manifold here, i.e. as if ##f:M\rightarrow N## where a function between manifolds. That's why I have ##V_\rho \in T_{f(p)}\mathbb{R}## although in fact we only have one dimension and the entire vector space is spanned by ##1.## This means ##V_\rho = 1## in the above case. I just found the general case with ##V_\rho## better if we want to see what is happening. ##\ldots \cdot 1## isn't very enlightening.

So you are right, covector field. I have written vector field because it is the more general term. A covector field is always a vector field, too, since covectors are vectors. This way, i.e. by writing vector field, I tried to avoid thinking about what you urged me to write in this post here anyway.

Edit: The ##u_\rho## are multiples of the basis ##dx_\rho## in this case.
 
  • #7
fresh_42 said:
This means you need to define ##\displaystyle{ df\, : \,\bigsqcup_{p\in M} T_pM\rightarrow \bigsqcup_{p\in M} T_{f(p)}\mathbb{R}}## simply to make them the same thing.

Here ##\displaystyle { \bigsqcup_{p\in M} T_pM}## and ##\displaystyle { \bigsqcup_{p\in M} T_{f(p)}\mathbb R}## are actually tangent bundles ?
 
  • #9
fresh_42 said:
Linear maps on the other hand can be seen as ##(1,1)##-tensors, i.e. a linear combination of covectors.
##(1,1)##-tensors should be actually a linear combination of tensor product of covectors times vectors.
 
  • #10
cianfa72 said:
##(1,1)##-tensors should be actually a linear combination of tensor product of covectors times vectors.
Sure, but the covectors can be evaluated. That gives you a linear combination of vectors
$$
d_pf(v)=\left(\sum_\rho u^*_\rho \otimes V_\rho\right)(v)=\sum_\rho u^*_\rho(v) \cdot V_\rho.
$$
Your example is
$$
d_pf=\sum_\rho u^*_\rho \otimes V_\rho =\sum_\rho u^*_\rho \otimes 1 =\sum_\rho u^*_\rho = \sum_\rho a_\rho {d_p}x_\rho
$$
which is a linear combination of the basis covectors ##dx_k## at ##p.##

Everything is a matter of perspective.
 
  • Like
Likes cianfa72
  • #11
fresh_42 said:
A covector field is always a vector field, too, since covectors are vectors.
Covectors are vectors in the sense that every element of a vector space is by definition a "vector" !

Edit: in my example above we have just one vector ##V## in the target 1-dimensional tangent space ##T_p\mathbb R=\mathbb R## at ##p##, hence it should be:

$$d_pf=\sum_\rho u^*_\rho \otimes V =\sum_\rho u^*_\rho \otimes 1 =\sum_\rho u^*_\rho = \sum_\rho a_\rho {d_p}x_\rho$$
 
Last edited:

What is a differential operator?

A differential operator is a mathematical operator defined as a function of the differentiation operator. It involves derivatives with respect to variables, and it acts on functions to produce another function. Differential operators are used extensively in fields such as physics, engineering, and mathematics to solve differential equations and to analyze mathematical functions.

What is a one-form or covector field?

A one-form, or covector field, is a mathematical object in differential geometry that generalizes the concept of a linear functional in vector calculus. It is a smooth section of the cotangent bundle of a manifold. One-forms can be used to measure the rate of change of a function along a curve and are integral in defining integrals over paths, surfaces, and volumes in manifold theory.

How do differential operators differ from one-forms?

Differential operators and one-forms are fundamentally different in their roles and operations. A differential operator acts on functions, typically involving derivatives, and is used primarily to manipulate and solve equations involving derivatives. In contrast, a one-form is a type of differential form that assigns a scalar to each tangent vector at a point on a manifold, essentially measuring how much a function changes in the direction of the vector. While both involve derivatives, their applications and theoretical implications differ significantly.

Can one-forms and differential operators be directly compared or converted?

Direct comparison or conversion between one-forms and differential operators is not straightforward because they operate in different contexts and have different mathematical structures. However, in specific settings, such as on smooth manifolds, differential operators can be related to one-forms through the exterior derivative, which takes a function (zero-form) and produces its differential, a one-form. This connection is more about interaction in differential geometry rather than a direct conversion.

What are practical applications of differential operators and one-forms?

Differential operators are primarily used in solving differential equations, which are fundamental in physics for modeling dynamics and fields, in engineering for describing systems and processes, and in mathematics for analysis and theoretical developments. One-forms are crucial in geometry and physics, particularly in the formulation of integral calculus on manifolds, such as in the expressions of work along a path in a vector field and flux through surfaces. They are also key in the modern theoretical framework of physics, including electromagnetism and general relativity.

Similar threads

  • Differential Geometry
Replies
2
Views
591
  • Differential Geometry
Replies
7
Views
2K
  • Differential Geometry
Replies
6
Views
537
Replies
4
Views
2K
  • Differential Geometry
Replies
5
Views
3K
  • Differential Geometry
Replies
4
Views
2K
  • Differential Geometry
Replies
21
Views
648
Replies
6
Views
357
  • Differential Geometry
Replies
4
Views
2K
  • Differential Geometry
Replies
3
Views
1K
Back
Top