The contracting relations on the Christoffel symbols

Click For Summary
SUMMARY

The discussion focuses on deriving the expression for the Christoffel symbols, specifically $$\Gamma^{\nu}_{\mu \nu}$$, and its relation to the determinant of the metric tensor in a Lorentzian manifold. The participants confirm that $$\Gamma^{\nu}_{\mu \nu} = \frac{1}{2}g^{\nu \delta}\partial_{\mu}g_{\nu \delta}$$ and emphasize the importance of using $$\sqrt{-g}$$ due to the negative determinant of the metric. The conversation also touches on the implications of the covariant derivative and the Laplace-Beltrami operator in the context of scalar fields.

PREREQUISITES
  • Understanding of Riemannian geometry and metric tensors
  • Familiarity with Christoffel symbols and their properties
  • Knowledge of determinants and their role in differential geometry
  • Basic concepts of covariant derivatives and scalar fields
NEXT STEPS
  • Study the derivation of the Laplace-Beltrami operator in Riemannian geometry
  • Explore the relationship between Christoffel symbols and the covariant derivative
  • Learn about the properties of the Levi-Civita symbol in tensor calculus
  • Investigate the implications of the determinant of the metric tensor in general relativity
USEFUL FOR

Mathematicians, physicists, and students studying general relativity or differential geometry, particularly those interested in the properties of Christoffel symbols and their applications in theoretical physics.

Arman777
Insights Author
Gold Member
Messages
2,163
Reaction score
191
Homework Statement
The contracting relations on the Christoffel symbols
Relevant Equations
Tensor Equations
I am trying to find $$\Gamma^{\nu}_{\mu \nu} = \partial_{\mu} log(\sqrt{g})$$ but I cannot.

by calculations, I manage to find

$$\Gamma^{\nu}_{\mu \nu} = \frac{1}{2}g^{\nu \delta}\partial_{\mu}g_{\nu \delta}$$

and from research I have find that $$det(A) = e^{Tr(log(A))}$$ but still I cannot make the connection. Any ideas?

where ##g = det(g_{\alpha \beta})##
 
Physics news on Phys.org
First of all you must always have ##\sqrt{-g}##, because ##g<0## due to the signature of the Lorentzian manifold.

Further think about, how (the matrix) ##g^{\mu \nu}## is related to (the matrix) ##g_{\mu \nu}## and what this has to do with determinants!
 
  • Like
Likes   Reactions: Arman777
vanhees71 said:
First of all you must always have ##\sqrt{-g}##, because ##g<0## due to the signature of the Lorentzian manifold.

Further think about, how (the matrix) ##g^{\mu \nu}## is related to (the matrix) ##g_{\mu \nu}## and what this has to do with determinants!
I ll try and get back to you
 
vanhees71 said:
First of all you must always have ##\sqrt{-g}##, because ##g<0## due to the signature of the Lorentzian manifold.

Further think about, how (the matrix) ##g^{\mu \nu}## is related to (the matrix) ##g_{\mu \nu}## and what this has to do with determinants!
I can see that ##det(g^{\mu \nu })= 1/g##
 
  • Like
Likes   Reactions: vanhees71
Then further note that
$$\mathrm{det} (g_{\mu \nu})=g=\frac{1}{4!} \Delta^{\mu_1\ldots \mu_4} \Delta ^{\nu_1 \ldots \nu_4} g_{\mu_1 \nu_1} \cdots g_{\mu_4 \nu_4}.$$
Here and in the following I use the notation
$$\Delta^{\mu_1 \ldots \mu_4}=\Delta_{\mu_1 \ldots \mu_r}$$
for the Levi-Civita symbols (which are NOT tensor components), i.e., the totally antisymmetric symbols with ##\Delta^{0123}=\Delta_{0123}=+1##.

Now take the derivative ##\partial_{\mu}## which gives
$$\partial_{\mu} g = \frac{1}{3!} (\partial_{\mu} g_{\mu_1 \nu_1}) \Delta^{\mu_1\ldots \mu_4} \Delta ^{\nu_1 \ldots \nu_4} g_{\mu_2 \nu_2} \cdots g_{\mu_4 \nu_4}=:\tilde{g}^{\mu_1 \nu_1} \partial_{\mu} g_{\mu_1 \nu_1}.$$
But now let's think about
$$\tilde{g}^{\mu_1 \nu_1} = \frac{1}{3!} \Delta^{\mu_1\ldots \mu_4} \Delta ^{\nu_2 \ldots \nu_4} g_{\mu_2 \nu_1} \cdots g_{\mu_4 \nu_4}$$
is. To that end we evaluate
$$g_{\alpha \mu_1} \tilde{g}^{\mu_1 \nu_1}= \frac{1}{3!} \Delta^{\mu_1\ldots \mu_4} \Delta ^{\nu_1 \ldots \nu_4} g_{\mu_1 \nu_1} \cdots g_{\mu_4 \nu_4} g_{\mu_1 \alpha}.$$
In the last step I used the symmetry of the metric, ##g_{\mu_1 \alpha}=g_{\alpha \mu_1}##. Now do the contraction wrt. the ##\mu_k##, which leads to
$$g_{\alpha \mu_1} \tilde{g}^{\mu_1 \nu_1}=g \frac{1}{3!} \Delta_{\alpha \nu_2\cdots \nu_1} \Delta ^{\nu_1 \ldots \nu_4} = g \delta^{\nu_1}_{\alpha}.$$
From this you have
$$\tilde{g}^{\mu_1 \nu_1}=g g^{\mu_1 \nu_1}.$$
So you get
$$\partial_{\mu} g=g g^{\mu_1 \nu_1} \partial_{\mu} g_{\mu_1 \nu_1}.$$
So finally
$$\partial_{\mu} \ln (\sqrt{-g})=\frac{1}{2} \partial_\mu \ln(-g)=\frac{1}{2g} \partial_{\mu} g=\frac{1}{2} g^{\alpha \beta} \partial_{\mu} g_{\alpha \beta},$$
which is what you wanted to prove.
 
  • Like
Likes   Reactions: Arman777, etotheipi and JD_PM
vanhees71 said:
Then further note that
$$\mathrm{det} (g_{\mu \nu})=g=\frac{1}{4!} \Delta^{\mu_1\ldots \mu_4} \Delta ^{\nu_1 \ldots \nu_4} g_{\mu_1 \nu_1} \cdots g_{\mu_4 \nu_4}.$$
Here and in the following I use the notation
$$\Delta^{\mu_1 \ldots \mu_4}=\Delta_{\mu_1 \ldots \mu_r}$$
for the Levi-Civita symbols (which are NOT tensor components), i.e., the totally antisymmetric symbols with ##\Delta^{0123}=\Delta_{0123}=+1##.

Now take the derivative ##\partial_{\mu}## which gives
$$\partial_{\mu} g = \frac{1}{3!} (\partial_{\mu} g_{\mu_1 \nu_1}) \Delta^{\mu_1\ldots \mu_4} \Delta ^{\nu_1 \ldots \nu_4} g_{\mu_2 \nu_2} \cdots g_{\mu_4 \nu_4}=:\tilde{g}^{\mu_1 \nu_1} \partial_{\mu} g_{\mu_1 \nu_1}.$$
But now let's think about
$$\tilde{g}^{\mu_1 \nu_1} = \frac{1}{3!} \Delta^{\mu_1\ldots \mu_4} \Delta ^{\nu_2 \ldots \nu_4} g_{\mu_2 \nu_1} \cdots g_{\mu_4 \nu_4}$$
is. To that end we evaluate
$$g_{\alpha \mu_1} \tilde{g}^{\mu_1 \nu_1}= \frac{1}{3!} \Delta^{\mu_1\ldots \mu_4} \Delta ^{\nu_1 \ldots \nu_4} g_{\mu_1 \nu_1} \cdots g_{\mu_4 \nu_4} g_{\mu_1 \alpha}.$$
In the last step I used the symmetry of the metric, ##g_{\mu_1 \alpha}=g_{\alpha \mu_1}##. Now do the contraction wrt. the ##\mu_k##, which leads to
$$g_{\alpha \mu_1} \tilde{g}^{\mu_1 \nu_1}=g \frac{1}{3!} \Delta_{\alpha \nu_2\cdots \nu_1} \Delta ^{\nu_1 \ldots \nu_4} = g \delta^{\nu_1}_{\alpha}.$$
From this you have
$$\tilde{g}^{\mu_1 \nu_1}=g g^{\mu_1 \nu_1}.$$
So you get
$$\partial_{\mu} g=g g^{\mu_1 \nu_1} \partial_{\mu} g_{\mu_1 \nu_1}.$$
So finally
$$\partial_{\mu} \ln (\sqrt{-g})=\frac{1}{2} \partial_\mu \ln(-g)=\frac{1}{2g} \partial_{\mu} g=\frac{1}{2} g^{\alpha \beta} \partial_{\mu} g_{\alpha \beta},$$
which is what you wanted to prove.
Just one question why ##\partial_{\mu} g \neq 0## ? or can we say that ##\partial_{\mu}\partial^{\mu} g = 0##
 
Why should ##\partial_{\mu} g=0##? Of course if you are in SR you can always choose a global Minkowski-orthonormal basis. Then ##g_{\mu \nu}=\eta_{\mu \nu}=\mathrm{diag}(1,-1,-1,-1)=\text{const}## and ##\partial_{\rho} g_{\mu \nu}=0## and thus also ##\partial_{\mu} g=0##. In this case of course the covariant derivative coincides with the partial derivative, because all Christoffel symbols vanish too.
 
vanhees71 said:
In this case of course the covariant derivative coincides with the partial derivative, because all Christoffel symbols vanish too.
So its true that ##\partial_{\mu}\partial^{\mu}g = 0##
 
How do you come to this conclusion?
 
  • #10
vanhees71 said:
How do you come to this conclusion?
I did not actually :p Well I was doing another mathematical calculation about the ##\nabla_{\mu}\nabla^{\mu} \Phi## ,where ##\Phi## is a scalar function. In order to obtain the desired result it seems that ##\partial_{\mu}\partial^{\mu}g## must be 0 ? If you want I can share a separate question about it as well.
 
  • #11
This we can answer pretty easily with what we've derived above so far. First take an arbitrary vector field ##V^{\mu}## and calculate the "divergence". We have
$$\nabla_{\nu} V^{\mu} = \partial_{\nu} V^{\mu} +{\Gamma^{\mu}}_{\nu \rho} V^{\rho}.$$
From that we find taking the trace
$$\nabla_{\mu} V^{\mu} = \partial_{\mu} V^{\mu} + {\Gamma^{\mu}}_{\mu \rho} V^{\rho}.$$
Now we use our formula for the contraction of the Christoffel symbol
$$\nabla_{\mu} V^{\mu} =\partial_{\mu} V^{\mu} + (\partial_{\rho} \ln (\sqrt{-g})] V^{\rho} = \partial_{\rho} V^{\rho} + \frac{1}{\sqrt{-g}} V^{\rho} \partial_{\rho} \sqrt{-g} = \frac{1}{\sqrt{-g}} \partial_{\rho} (\sqrt{-g} V^{\rho}).$$
Further we have
$$V_{\mu}=\partial_{\mu} \Phi \; \Rightarrow \; V^{\rho}=g^{\rho \mu} \partial_{\mu} \Phi.$$
From this we get,
$$\nabla_{\rho} \nabla^{\rho} \Phi=\frac{1}{\sqrt{-g}} \partial_{\rho} (\sqrt{-g} g^{\rho \mu} \partial_{\mu} \Phi).$$
So you get the so-called Laplace-Beltrami operator.
 
Last edited:
  • Like
Likes   Reactions: etotheipi and Arman777
  • #12
In my calculations I did something like this
1618137971515.png


but it seems wrong ... But I see your point.
 
  • #13
I don't understand, how you get from the 2nd to the 3rd expression. Of course ##\nabla_{\nu} \Phi=\partial_{\nu}\ Phi##, and then you get the correct expression, the Laplace-Beltrami operator.
 
  • #14
vanhees71 said:
2nd to the 3rd expression.
how so ?
By using this I am getting

$$\nabla_{\mu}(g^{\mu \nu}\nabla_{\nu}\Phi) = \frac{1}{\sqrt{g}}\partial_{\mu}[g^{\mu \nu}\partial_{\nu}(\sqrt{g}\Phi)]$$

but you are writing

$$\nabla_{\mu}(g^{\mu \nu}\nabla_{\nu}\Phi) = \frac{1}{\sqrt{g}}\partial_{\mu}[g^{\mu \nu}\sqrt{g}\partial_{\nu}(\Phi)]$$

there is a ##\sqrt(g)## difference. In my its inside the partial and in yours its outside..
 
  • #15
As I said, I don't understand your step. Can you prove it?
 
  • #16
vanhees71 said:
As I said, I don't understand your step. Can you prove it?
I have just put the definition of the ##\nabla_{\nu}\Phi = \frac{1}{\sqrt{g}} \partial_{\nu}(\sqrt{g}\Phi)## inside the paranthesis ?
 
  • #18
Arman777 said:
I have just put the definition of the ##\nabla_{\nu}\Phi = \frac{1}{\sqrt{g}} \partial_{\nu}(\sqrt{g}\Phi)## inside the paranthesis ?
No! The definition of ##\nabla_{\mu} \phi=\partial_{\mu} \Phi##. ##\Phi## is a scalar field!
 
  • Like
Likes   Reactions: Arman777
  • #19
oh shi*t. I understand it now okay. I was also saying there's something wrong but could not figure out why. Okay some things make more sense now after your approach in #11. Thanks a lot
 
  • Like
Likes   Reactions: vanhees71

Similar threads

Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K