mathmari
Gold Member
MHB
- 4,984
- 7
Hey! 
Let $A \in\mathbb{R}^{n\times n}$, $n\geq 3$ be a matrix with $n+1$ elements $1$ and the remaining elements are $0$. I want to show that $\det (A)\in \{-1, 0, 1\}$ and each of these $3$ possible values can occur.
Could you give me a hint how we could show that? I got stuck right now. (Wondering)
Let $A \in\mathbb{R}^{n\times n}$, $n\geq 3$ be a matrix with $n+1$ elements $1$ and the remaining elements are $0$. I want to show that $\det (A)\in \{-1, 0, 1\}$ and each of these $3$ possible values can occur.
Could you give me a hint how we could show that? I got stuck right now. (Wondering)