I The Dirac equation as a linear tensor equation for one component

akhmeteli
Messages
816
Reaction score
41
TL;DR Summary
The Dirac equation is a spinor equation. Tensor equivalents of the equation proposed previously were nonlinear or involved several components of the Dirac field. I derived a linear tensor equivalent of the Dirac equation for just one component.
The abstract of my new article (Eur. Phys. J. C 84, 488 (2024)):

The Dirac equation is one of the most fundamental equations of modern physics. It is a spinor equation, but some tensor equivalents of the equation were proposed previously. Those equivalents were either nonlinear or involved several components of the Dirac field. On the other hand, the author showed previously that the Dirac equation in electromagnetic field is equivalent to a fourth-order equation for one component of the Dirac spinor. The equivalency is used in this work to derive a linear tensor equivalent of the Dirac equation for just one component. This surprising result can be used in applications of the Dirac equation, for example, in general relativity or for lattice approximation of the Dirac field, and can improve our understanding of the Dirac equation.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top