I The electric field due to a dipole

AI Thread Summary
The discussion focuses on understanding the derivation of equations related to dipole charges positioned along the z-axis. It highlights the transition from the radius equation to the squared terms involving z and d, emphasizing the simplification using 1D vector algebra. The dipole configuration is explained with charges Q and -Q, and the resulting electric field is derived from the superposition of their Coulomb fields. The conversation also touches on the electrostatic potential and its Taylor expansion, leading to the dipole potential expression. Ultimately, the discussion illustrates the mathematical steps to arrive at the dipole field equations.
wolly
Messages
49
Reaction score
2
asfa.PNG


and

uug.PNG

Can someone explain how they made these equations like this?
How did the radius become that equation?
What formulas from algebra did they applied?
I'm looking at these formulas and I don't understand how r=z+1/2*d
 
Physics news on Phys.org
The dipole charges are defined to be on the z axis at ##z=\pm d/2##. If I point out that your textbook is not using full-on vector algebra, so is working in 1d, can you see how to get from ##r^2## to ##(z\pm d/2)^2##?
 
From this little example, I can only come to the conclusion to recommend to use another book. SCNR.

The idea of the dipole is to have a charge ##Q## at ##(0,0,d/2)=d/2 \vec{e}_3## and ##-Q## at ##(0,0,-d/2)=-d/2 \vec{e}_3##. The field is given by the superposition of the field of these point charges (Coulomb fields), i.e.,
$$\vec{E}=\frac{Q}{4 \pi \epsilon_0} \left [\frac{\vec{r}-d/2 \vec{e}_3}{|(\vec{r}-d/2 \vec{e}_3|^3}-\frac{\vec{r}+d/2 \vec{e}_3}{|\vec{r}+d/2 \vec{e}_3|^3} \right].$$
The next step usually is to make ##d \rightarrow 0## while keeping ##Q d=\text{const}##. This leads to the dipole approximation of the field for this charge configuration. This is a somewhat cumbersome calculation, however.

It's easier to use the electrostatic potential:
$$\Phi(\vec{r},d)=\frac{Q}{4 \pi \epsilon_0} \left [\frac{1}{|\vec{r}-d/2 \vec{e}_3|} - \frac{1}{|\vec{r}+d/2 \vec{e}_3|} \right].$$
Now ##|\vec{r} \pm d/2 \vec{e}_3|=\sqrt{x_1^2 +x_2^2 + (x_3\pm d/2)}^2##.
The Taylor expansion of ##\Phi## wrt. ##d## is
$$\Phi(\vec{r},d)=\Phi(\vec{r},0) + d \partial_d \Phi(\vec{r},0)+\mathcal{O}(d^2) = d \partial_d \Phi(\vec{r},0)+\mathcal{O}(d^2).$$
This gives
$$\Phi(\vec{r},d)=\frac{Q d x_3}{4 \pi \epsilon_0 r^3} + \mathcal{O}(Q d^2).$$
Defining the dipole moment
$$\vec{p}=Q d \vec{e}_3$$
Making now ##d \rightarrow 0## but keeping ##Q d=\text{const}## you get the dipole potential,
$$\Phi(\vec{r})=\frac{\vec{p} \cdot \vec{r}}{4 \pi \epsilon r^3}.$$
The field is
$$\vec{E}=-\vec{\nabla} \Phi=-\frac{\vec{p}}{4 \pi \epsilon_0 r^3} + \frac{3 (\vec{p} \cdot \vec{r}) \vec{r}}{4 \pi \epsilon_0 r^5} = \frac{1}{4 \pi \epsilon_0 r^5} [3 (\vec{r} \cdot \vec{p}) \vec{r}-r^2 \vec{p}].$$
 
Last edited:
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Hello! Let's say I have a cavity resonant at 10 GHz with a Q factor of 1000. Given the Lorentzian shape of the cavity, I can also drive the cavity at, say 100 MHz. Of course the response will be very very weak, but non-zero given that the Loretzian shape never really reaches zero. I am trying to understand how are the magnetic and electric field distributions of the field at 100 MHz relative to the ones at 10 GHz? In particular, if inside the cavity I have some structure, such as 2 plates...
Back
Top