The electric field due to a dipole

Click For Summary
SUMMARY

The discussion focuses on the derivation of the electric field due to a dipole, specifically using the superposition of Coulomb fields from two point charges, +Q and -Q, located at z = ±d/2. The equations presented include the electric field expression, vec{E} = -vec{\nabla} \Phi, and the dipole potential \Phi(vec{r}) = \frac{vec{p} \cdot vec{r}}{4 \pi \epsilon_0 r^3}, where vec{p} = Qd vec{e}_3. The discussion emphasizes the importance of the dipole approximation and the Taylor expansion of the electrostatic potential for simplifying calculations.

PREREQUISITES
  • Understanding of electrostatics and Coulomb's law
  • Familiarity with vector calculus and gradient operations
  • Knowledge of Taylor series expansions
  • Basic concepts of electric dipoles and dipole moments
NEXT STEPS
  • Study the derivation of the electric field from point charges using Coulomb's law
  • Learn about the Taylor expansion and its applications in physics
  • Explore the concept of dipole moments and their significance in electrostatics
  • Investigate the implications of the dipole approximation in various physical scenarios
USEFUL FOR

Students and professionals in physics, particularly those specializing in electromagnetism, as well as educators looking to enhance their understanding of electric fields and dipole theory.

wolly
Messages
49
Reaction score
2
asfa.PNG


and

uug.PNG

Can someone explain how they made these equations like this?
How did the radius become that equation?
What formulas from algebra did they applied?
I'm looking at these formulas and I don't understand how r=z+1/2*d
 
Physics news on Phys.org
The dipole charges are defined to be on the z axis at ##z=\pm d/2##. If I point out that your textbook is not using full-on vector algebra, so is working in 1d, can you see how to get from ##r^2## to ##(z\pm d/2)^2##?
 
From this little example, I can only come to the conclusion to recommend to use another book. SCNR.

The idea of the dipole is to have a charge ##Q## at ##(0,0,d/2)=d/2 \vec{e}_3## and ##-Q## at ##(0,0,-d/2)=-d/2 \vec{e}_3##. The field is given by the superposition of the field of these point charges (Coulomb fields), i.e.,
$$\vec{E}=\frac{Q}{4 \pi \epsilon_0} \left [\frac{\vec{r}-d/2 \vec{e}_3}{|(\vec{r}-d/2 \vec{e}_3|^3}-\frac{\vec{r}+d/2 \vec{e}_3}{|\vec{r}+d/2 \vec{e}_3|^3} \right].$$
The next step usually is to make ##d \rightarrow 0## while keeping ##Q d=\text{const}##. This leads to the dipole approximation of the field for this charge configuration. This is a somewhat cumbersome calculation, however.

It's easier to use the electrostatic potential:
$$\Phi(\vec{r},d)=\frac{Q}{4 \pi \epsilon_0} \left [\frac{1}{|\vec{r}-d/2 \vec{e}_3|} - \frac{1}{|\vec{r}+d/2 \vec{e}_3|} \right].$$
Now ##|\vec{r} \pm d/2 \vec{e}_3|=\sqrt{x_1^2 +x_2^2 + (x_3\pm d/2)}^2##.
The Taylor expansion of ##\Phi## wrt. ##d## is
$$\Phi(\vec{r},d)=\Phi(\vec{r},0) + d \partial_d \Phi(\vec{r},0)+\mathcal{O}(d^2) = d \partial_d \Phi(\vec{r},0)+\mathcal{O}(d^2).$$
This gives
$$\Phi(\vec{r},d)=\frac{Q d x_3}{4 \pi \epsilon_0 r^3} + \mathcal{O}(Q d^2).$$
Defining the dipole moment
$$\vec{p}=Q d \vec{e}_3$$
Making now ##d \rightarrow 0## but keeping ##Q d=\text{const}## you get the dipole potential,
$$\Phi(\vec{r})=\frac{\vec{p} \cdot \vec{r}}{4 \pi \epsilon r^3}.$$
The field is
$$\vec{E}=-\vec{\nabla} \Phi=-\frac{\vec{p}}{4 \pi \epsilon_0 r^3} + \frac{3 (\vec{p} \cdot \vec{r}) \vec{r}}{4 \pi \epsilon_0 r^5} = \frac{1}{4 \pi \epsilon_0 r^5} [3 (\vec{r} \cdot \vec{p}) \vec{r}-r^2 \vec{p}].$$
 
Last edited:
  • Like
Likes   Reactions: PeroK

Similar threads

  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K