MHB The extension is Galois iff E is a splitting field of a separable polynomial of F[x]

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $E/F$ be a finite extension.
I want to show that this extension is Galois if and only if $E$ is a splitting field of a separable polynomial of $F[x]$. I have done the folllowing:

$\Rightarrow$ :
We suppose that $E/F$ is Galois. So, we have that the extension is normal and separable.
Since the extension is normal we have that $E$ is a splitting field of a polynomial $f\in F[x]$.
Let $p(x)$ be an irreducible factor of $f(x)$.
Let $a$ be a root of $p(x)$ then $a$ is also a root of $f(x)$, so $a\in E$.
We have that $p(x)=\lambda \text{Irr}(a,F), \lambda\in F$.
Since the extension $E/F$ is separable we have that for each element $e\in E$ the $\text{Irr}(e,F)$ is separable, so it has only simple roots.
So, $\text{Irr}(a,F)$ has only simple roots, so also $p(x)$, so $p(x)$ is separable.
We have that a polynomial is separable if each irreducible factor is separable. So, $f(x)$ is separable.
So, $E$ is a splitting field of a separable polynomial $f(x)$.

Is this direction correct? (Wondering) $\Leftarrow$ :
We suppose that $E$ is a splitting field of a separable polynomial of $F[x]$, say $f(x)$.
From that we conclude that the extension $E/F$ is normal. So, each irreducible polynomial of $F[x]$ that has a root in $E$, has all the roots in $E$.
Let $a\in E$ be a root of $f(x)$.
$\text{Irr}(a,F)$ is an irreducible factor of $f(x)$. Since $f(x)$ is separable, we have that $\text{Irr}(a,F)$ is also separable.
To show that the extension $E/F$ is separable we have to show that for each $e\in E$ the $\text{Irr}(e,F)$ is separable, right?
From what I have shown so far, we have that this holds only for those elements of $E$ that are a root of $f(x)$, or not? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
Let $a\in E$ be a root of $f(x)$.
$\text{Irr}(a,F)$ is an irreducible factor of $f(x)$. Since $f(x)$ is separable, we have that $\text{Irr}(a,F)$ is also separable.
To show that the extension $E/F$ is separable we have to show that for each $e\in E$ the $\text{Irr}(e,F)$ is separable, right?
From what I have shown so far, we have that this holds only for those elements of $E$ that are a root of $f(x)$, or not? (Wondering)

I changed this part... Let $a_1,a_2,\ldots,a_n\in E$ be all the roots of $f(X)$. Then $E=F(a_1,a_2,\ldots,a_n)=F(a_1)(a_2)(a_3)\ldots(a_n)$.
We have that when $a$ is separable $/F$, then the extension $F(a)$ is separable $/F$.
Let $a_i\in \{a_1, a_2, \ldots , a_n\}$ with $1\leq i \leq n$.
We will show that the extension $F(a_1, a_2, \ldots , a_n)$ is separable $/F$ by induction on $i$.

Base case: For $i=1$ we have that $m(a_1, F)$ is an irreducible factor of $f(X)$. Since $f(X)$ is separable, we have that $m(a_1, F)$ is separable. So, $a_1$ is separable $/F$. Then the extension $F(a_1)$ is separable $/F$.
Inductive Hypothesis: We suppose that it holds for $i=k$, i.e., the extsnion $F(a_1, \ldots , a_k)$ is separable $/F$.
Inductive step: We will show that it holds for $i=k+1$, i.e., that the extension $F(a_1, \ldots , a_{k+1})$ is separable $/F$. We have that $F(a_1, \ldots , a_{k+1})=F(a_1, \ldots , a_k)(a_{k+1})$. We have the extensions $$F\leq F(a_1, \ldots , a_k)\leq F(a_1, \ldots , a_k)(a_{k+1})$$
We have that $m(a_{k+1}, F(a_1, \ldots , a_k))$ is an irreducible factor of $f(X)\in F[X]\leq F(a_1, \ldots , a_k)[X]$. Since $f(X)$ is separable, we have that $m(a_{k+1}, F(a_1, \ldots , a_k))$is also separable. So, $a_{k+1}$ is separable $/F(a_1, \ldots , a_k)$. Then the extension $F(a_1, \ldots , a_k)(a_{k+1})$is separable $/F(a_1, \ldots , a_k)$.
From the inductive hypothesis we have that the extension $F(a_1, \ldots , a_k)$ is separable $/F$.
Therefore, the extension $F(a_1, \ldots , a_k)( a_{k+1})$ is separable $/F$.

So, the extension $E/F=F(a_1, a_2, \ldots , a_n)/F$ is separable.
Therefore, the extension $E/F$ is Galois. Is it correct now? Could I improve something? (Wondering)

Is the induction correct? (Wondering)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top